

RWM Stabilization and Control Research on NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI Princeton U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

S.A. Sabbagh¹, J.M. Bialek¹, R.E. Bell², D.A. Gates²,
B. LeBlanc², J.E. Menard², J.W. Berkery¹, A.H.
Boozer¹, A.H. Glasser³, F. Levinton⁴, K. Tritz⁵, H. Yu⁴

¹Department of Applied Physics, Columbia University, New York, NY, USA ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA ³Los Alamos National Laboratory, Los Alamos, NM, USA ⁴Nova Photonics, Inc., Princeton, NJ, USA ⁵Johns Hopkins University, Baltimore, MD, USA

Workshop on Active Control of MHD Instabilities

November 18, 2007 Columbia University New York, NY

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Controlling RWMs and understanding stabilization is critical for future high performance tokamaks

Motivation

- Resistive Wall Mode (RWM) growth leads to beta collapse, disruption
- □ <u>High reliability control</u> needed for future burning plasma devices (at low or high plasma rotation, ω_{ϕ})

Outline

- Active RWM Control
- RWM Stabilization Characteristics

RWM active control research emphasized in 2007

- Increase reliability and understanding of RWM active control
 - Analysis of RWM control system performance
 - RWM control experiments using expanded magnetic sensor combinations
 - Variations for improved control

- □ Upper B_p sensors for feedback
- Non-resonant magnetic braking
- n = 2 RWM amplitude rises, remains stable while n = 1 stabilized
- **D** Plasma $\beta_N > 5.5$ reached
 - S.A. Sabbagh, et al., PRL 97 (2006) 045004.

RWM control system uses expanded sensor set

- Stabilizer plates for kink mode stabilization
- External midplane control coils closely coupled to vacuum vessel
- Varied sensor combinations used for feedback
 - □ 24 upper/lower B_p: (B_{pu}, B_{pl})
 - □ 24 upper/lower B_r: (B_{ru}, B_{rl})
- □ Midplane $n = 1 B_r$ sensors
 - Outboard of control coil
 - Not used for feedback to date

VALEN code reproduces B_{pu} sensor feedback performance

- New model simulates experiment
 - Upper B_p sensors located as on device
 - Compensation of control field from sensors
 - Experimental equilibrium reconstruction (including MSE data)
 - Proportional gain
- Advanced feedback control may significantly improve future performance
 - Optimized state-space controller with B_{pu} sensors may stabilize β_N/β_N^{wall} < 95%

O. Katsuro-Hopkins et al., this meeting

Varying relative phase shows positive/negative feedback

<u>n = 2 RWM does not become unstable during n = 1 stabilization</u>

Combination of upper/lower B_p sensors used to improve control

- Feedback phase scan using B_{pu} and B_{pl}
 - Best phase shown 90°, not optimal configuration
 - Reduction in ∆B_{pu}ⁿ⁼¹ growth rate
 - Spatial phase offset between upper/lower B_p sensor flux can improve feedback
- Control using B_{pu} and B_{pl} also reduces ΔB_{r}

 - ❑ Suggests that feedback on ∆B_r may allow mode control

Feedback on B_r sensors alone insufficient for control

Feedback control modifications used successfully at moderate ω_{ϕ}

RWM passive stabilization characteristics more clear

- Scalar plasma rotation at q = 2 not adequate to describe RWM marginal stability
 - Concluded a few years ago on NSTX, further evidence in 2007
- RWM can go unstable at various levels of plasma rotation, various profile shapes
- **RWM** stability at low rotation profile not yet found unless
 - \square internal rotating mode with frequency ~ ω_{ϕ} present
 - active RWM control applied
- Some integral of plasma rotation, convolved with other plasma profile(s), apparently required to describe stabilization
- Role of Alfven frequency in description of stability criteria not yet well established in NSTX
 - □ Experiments showing stability at very low Ω_{crit}/ω_A may suggest that ω_A is simply not a useful scaling variable
 - □ Ion collisionality profile appears to alter Ω_{crit}

Significant variation of rotation profile shape at Ω_{crit}

- Benchmark profile for stabilization is $\omega_c = \omega_A/4q^2*$
 - predicted by Bondeson-Chu semikinetic theory**
- □ n = 3 braking field <u>reduces</u> Ω_{crit} profile
 - Contrary to simple loss of torque balance hypothesis
- □ High rotation outside q = 2.5 q = 2.0 not required for stability
 - Zero rotation at single q can be stable
- □ Scalar Ω_{crit}/ω_A at q = 2, > 2 not a reliable criterion for stability
 - consistent with distributed dissipation mechanism

*A.C. Sontag, et al., Phys. Plasmas **12** (2005) 056112. **A. Bondeson, M.S. Chu, Phys. Plasmas **3** (1996) 3013.

Plasma with zero rotation at q = 2 stable without feedback

- Equilibrium reconstruction with MSE and flux-isotherm constraint
- Rotation braking physics evolves
 - Non-resonant n = 3 (NTV), then additional braking seen at resonant surfaces

Plasma rotation speed, profile altered to examine stability

- High rotation typically stable, but not always
 - Apparent RWM observed at high core rotation
 - Need to understand instability mechanism
- Stability at intermediate rotation depends on profile
 - Passively stable plasma with $\omega_{\phi} = 0$ at q = 2 has slower edge and faster core rotation
- No reliable stable state at low rotation with feedback off
 - Increase number of low rotation plasmas in future research

$\underline{\Omega}_{crit}$ not correlated with simple torque balance model

- Rapid drop in ω_{ϕ} when RWM unstable may seem similar to 'forbidden bands' model
 - theory: drag from electromagnetic torque on tearing mode*
 - Rotation bifurcation at $\omega_0/2$ predicted
- No bifurcation at ∞₀/2 observed
 - no correlation at q = 2
 - Similar result for n = 1 and 3 applied field configuration

NSTX Ω_{crit} Database

($\omega_0 =$ steady-state plasma rotation)

*R. Fitzpatrick, Nucl. Fusion **33** (1993) 1061.

Increased Ion Collisionality Leads to Decreased Ω_{crit}

<u>NSTX research moves toward reliable active RWM</u> <u>control and stabilization physics understanding</u>

- Active feedback on upper and lower arrays of both B_r and B_p RWM sensors as key next step for reliability
 - Determine optimal feedback/sensor configuration at reduced plasma rotation
 - Examine potential role of multiple modes
- Passive stabilization physics not yet determined, however
 - Scalar Ω_{crit} is insufficient; full ω_{ϕ} profile may play a role
 - Simple torque balance model $\Omega_{crit} = \omega_0/2$ insufficient
 - Destabilization / loss of control possible in all rotation ranges
 - **Q** Role of ω_A not yet well established
 - Ion collisionality profile appears to alter Ω_{crit}

