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Controlling RWMs and understanding stabilization is 
critical for future high performance tokamaks

Motivation
Resistive Wall Mode (RWM) growth leads to beta 
collapse, disruption
High reliability control needed for future burning 
plasma devices (at low or high plasma rotation, ωφ)

Outline
Active RWM Control
RWM Stabilization Characteristics
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RWM active control research emphasized in 2007

Increase reliability 
and understanding of 
RWM active control

Analysis of RWM 
control system 
performance
RWM control 
experiments using 
expanded magnetic 
sensor combinations
Variations for 
improved control

Active n = 1 RWM control in NSTX (2006)

S.A. Sabbagh, et al., PRL 97 (2006) 045004. 
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RWM active stabilization coils

RWM sensors (Bp)

RWM sensors (Br)

Stabilizer
plates

Stabilizer plates for kink 
mode stabilization

External midplane control 
coils closely coupled to 
vacuum vessel

Varied sensor combinations 
used for feedback

24 upper/lower Bp: (Bpu, Bpl)
24 upper/lower Br: (Bru, Brl)

Midplane n = 1 Br sensors
Outboard of control coil
Not used for feedback to date

RWM control system uses expanded sensor set
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VALEN code reproduces Bpu sensor feedback performance

New model simulates 
experiment

Upper Bp sensors located as 
on device
Compensation of control field 
from sensors
Experimental equilibrium 
reconstruction (including 
MSE data)
Proportional gain

Advanced feedback control 
may significantly improve 
future performance

Optimized state-space 
controller with Bpu sensors 
may stabilize βN/βN
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n = 2 RWM does not become unstable during n = 1 stabilization

Control OFF
(RWM disrupts plasma)

Control ON
(fast βN drop, plasma recovers)
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Combination of upper/lower Bp sensors used to improve control

Feedback phase scan using 
Bpu and Bpl

Best phase shown 90o, not 
optimal configuration
• Reduction in ΔBpu

n=1

growth rate

Spatial phase offset 
between upper/lower Bp
sensor flux can improve 
feedback

Control using Bpu and Bpl
also reduces ΔBr

Correlation of βN collapse 
and ΔBru

n=1 amplitude
Suggests that feedback on 
ΔBr may allow mode 
control
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Feedback on Br sensors alone insufficient for control
Feedback on ΔBru alone

Clear initial drop in ΔBru

Continued drop in ΔBr and 
increase in ΔBrl (also ΔBpu)
leads to βN collapse

Feedback on ΔBru and ΔBrl

Controlled, steady ΔBru, ΔBrl

rapid RWM growth, rotation: 
βN collapse
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Feedback control modifications used successfully at moderate ωφ

NSTX record pulse length 
at Ip = 0.9 MA

Feedback used combined 
upper/lower Bp sensors 
with spatial phase offset
Moderate plasma rotation 
keeps ΔBr in check
n = 3 DC field phased to 
best maintain ωφ

Next steps toward further 
control reliability

Feedback on upper and 
lower arrays of both Brand Bp sensors
Determine optimal sensor 
spatial phase offsets
Test reliability at further 
reduced plasma rotation

J.E. Menard, et al., this meeting
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RWM passive stabilization characteristics more clear
Scalar plasma rotation at q = 2 not adequate to describe RWM 
marginal stability

Concluded a few years ago on NSTX, further evidence in 2007

RWM can go unstable at various levels of plasma rotation, various 
profile shapes

RWM stability at low rotation profile not yet found unless
internal rotating mode with frequency ~ ωφ present
active RWM control applied

Some integral of plasma rotation, convolved with other plasma 
profile(s), apparently required to describe stabilization 

Role of Alfven frequency in description of stability criteria not yet 
well established in NSTX

Experiments showing stability at very low Ωcrit/ωA may suggest that ωA
is simply not a useful scaling variable
Ion collisionality profile appears to alter Ωcrit
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Significant variation of rotation profile shape at Ωcrit

Benchmark profile for stabilization is 
ωc = ωA/4q2 *

predicted by Bondeson-Chu semi-
kinetic theory**

n = 3 braking field reduces Ωcrit profile
Contrary to simple loss of torque 
balance hypothesis

High rotation outside q = 2.5 q = 2.0 
not required for stability

Zero rotation at single q can be stable

Scalar Ωcrit/ωA at q = 2 , > 2 not a 
reliable criterion for stability

consistent with distributed dissipation 
mechanism

*A.C. Sontag, et al., Phys. Plasmas 12 (2005) 056112.
**A. Bondeson, M.S. Chu, Phys. Plasmas 3 (1996) 3013.
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Plasma with zero rotation at q = 2 stable without feedback

Equilibrium reconstruction 
with MSE and flux-isotherm 
constraint

Rotation braking physics 
evolves

Non-resonant n = 3 (NTV), 
then additional braking seen 
at resonant surfaces
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High rotation typically 
stable, but not always

Apparent RWM observed at 
high core rotation
Need to understand instability 
mechanism

Stability at intermediate 
rotation depends on profile

Passively stable plasma with 
ωφ = 0 at q = 2 has slower 
edge and faster core rotation 

No reliable stable state at 
low rotation with feedback 
off

Increase number of low 
rotation plasmas in future 
research
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Ωcrit not correlated with simple torque balance model

Rapid drop in ωφ when RWM 
unstable may seem similar 
to ‘forbidden bands’ model

theory: drag from 
electromagnetic torque on 
tearing mode*
Rotation bifurcation at ω0/2 
predicted

No bifurcation at ω0/2 
observed

no correlation at q = 2
Similar result for n = 1 and 3 
applied field configuration

*R. Fitzpatrick, Nucl. Fusion 33 (1993) 1061.

NSTX Ωcrit Database

(ω0 ≡ steady-state plasma rotation)
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Increased Ion Collisionality Leads to Decreased Ωcrit

Plasmas with similar vA

Consistent with neoclassical 
viscous dissipation model

at low γ, increased νi leads to 
lower Ωcrit

dissipation η ~ νi in high 
dissipation limit
(K. C. Shaing, Phys. Plasmas 11 (2004) 
5525.)
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(A. C. Sontag, et al., Nucl. Fusion 47 (2007) 1005.)
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Critical rotation profiles
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NSTX research moves toward reliable active RWM 
control and stabilization physics understanding

Active feedback on upper and lower arrays of both Br and Bp
RWM sensors as key next step for reliability

Determine optimal feedback/sensor configuration at reduced plasma 
rotation
Examine potential role of multiple modes

Passive stabilization physics not yet determined, however
Scalar Ωcrit is insufficient; full ωφ profile may play a role
Simple torque balance model Ωcrit = ω0/2 insufficient
Destabilization / loss of control possible in all rotation ranges
Role of ωA not yet well established
Ion collisionality profile appears to alter Ωcrit
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