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Motivation 

2 

•  Accurate description of guiding-center particle motions is essential for neoclassical 
transport in the nonaxisymmetric magnetic perturbations 

–  Drift-kinetic δf particle code: POCA (Particle Orbit Code for Anisotropic pressures) 
•  Guiding-center orbit motions on flux coordinates 
•  Fokker-Plank equation with pitch-angle scattering conserving toroidal momentum 

–  Benchmarked for neoclassical transport in axisymmetry 
–  Verify basic NTV physics and analyze NTV torque in magnetic braking experiments 

•  3D neoclassical theory found equivalence of NTV and kinetic potential energy  
–  Mathematically proved, numerically verified 
–  Identical form but different resonant conditions depending on rotation and collision 

•  Different feature can be captured by particle motion 

•  Neoclassical particle simulation can be a useful tool for kinetic stability analysis 
–  Benchmarked with semi-analytic theory for NTV study 
–  Kinetic potential energy can be calculated from NTV torque in a fully numerical method 
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Outline 
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•  Numerical verification of NTV physics with particle simulation 

•  Unification of NTV and kinetic potential energy 

•  A potential application of particle code to kinetic stability study  

•  Summary and Future Work 
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Fundamental NTV physics can be described by drift-kinetic 
particle motions in perturbed tokamaks 
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•  Semi-analytic NTV theory represents the fundamental NTV physics 
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∫
δB! Resonance! Neoclassical offset!

[J.-K. Park, PRL (2009)] !

Banana orbits in 2D and 3D w/o collisions!

[K. Kim, POP (2012)] !
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•  Semi-analytic NTV theory represents the fundamental NTV physics 

–  Particle simulation shows the quadratic δB dependency of NTV, on the both resonant 
and non-resonant flux surfaces 

–  Useful to particle simulation, enable NTV scaling by δB to improve statistics   

Quadratic δB Dependency of NTV 

resonant   !

non-resonant!
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∫

[K. Kim, POP (2012)] !
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NTV scan with δB in the simplified configurations!

δB!



MHD stability control workshop – Neoclassical transport and kinetic stability (Kimin Kim) ! Nov 20, 2013!

Rotational resonances can enhance radial particle transport 
by suppressing random phase-mixing 

•  Semi-analytic NTV theory represents the fundamental NTV physics 

–  Resonant field condition shifted to follow path of closed orbit 

–  Resonance frequency condition by particle’s bouncing class l 
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Closed orbit (n=3, l=1)! Closed orbit (n=1, l=1)!

[K. Kim, PRL (2013)] !
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= 0!

Original bounce orbit w/o ExB!

Phase shift of resonant surface by ExB precession!

δB!
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Rotational resonances can enhance radial particle transport 
by suppressing random phase-mixing 

•  Semi-analytic NTV theory represents the fundamental NTV physics 

–  Resonance frequency condition by particle’s bouncing class l 
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∫
Resonance!

[K. Kim, PRL (2013)] !

Projection of particle trajectory (l=1) with n=3 fields!
•  3D particle transport can be dominated by 

rotational resonances  

–  Enhanced transport by precession resonance 
at ωE~0, and bounce-harmonic resonance at 
3ωE~ωb 

–  Off-resonance rotations reduce the particle 
transport by random phase-mixing 
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= 0!
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Neoclassical offset can be identified at zero-torque 
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•  Semi-analytic NTV theory represents the fundamental NTV physics 

–  Neoclassical offset rotation is theoretically predicted as 

–  Numerically obtained Kc is consistent with theory prediction, indicating the plasma 
is in the connected regime 
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Neoclassical offset!
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1/ν	

SBP! 1/ν	

ν	



Without ExB!
Small ExB!

(ExB freq > bounce freq)	


Large ExB!

(ExB freq ~ bounce freq)	



Particle simulation reproduces predicted NTV physics  

•  Consistent features of NTV dependency on the collisionality are reproduced 
with drift-kinetic particle simulations 

–  Clear 1/ν-regime in the high collisionality with passing particle effects 
–  Superbanana-plateau (SBP) resonance in the low collisionality without ExB 
‒  ν-regime in the low collisionality with small ExB 
–  Enhanced NTV by bounce-harmonic resonance in the large ExB 

9 

1/ν	

ν	
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Equivalence of NTV and kinetic energy has been 
mathematically proved and numerically verified 
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•  3D neoclassical theory shows kinetic potential energy drives NTV force 
–  Imaginary part of kinetic energy is equivalent to NTV torque 

–  Lead to unification of NTV theory and RWM kinetic theory  

€ 

Tϕ = 2inδWK [J.-K. Park, POP (2011)] !

[Z. Wang, Submitted] !

Comparison of POCA with MARS-K:!
Inclusion of passing particles improves agreement!Numerical validation!
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Equivalence of NTV and kinetic energy has been theoretically 
proved and numerically verified 

•  3D neoclassical theory shows kinetic potential energy drives NTV force 
–  Imaginary part of kinetic energy is equivalent to NTV torque 

•  Perturbed magnetic field is expressed as Fourier series 

•  POCA calculates NTV using perturbed field spectrum 

•  Kinetic potential energy can be calculated from imaginary term of NTV 
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•  Plots of resonant operators show different feature in the rotational resonances 

–  NTV resonance by bounce-harmonic resonance ExB rotation 
–  Kinetic potential energy resonance shifted from bounce-harmonic resonances 

NTV and δWK are almost identical in formalism, but differ in 
resonant operators due to phase change 
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•  Particle simulation can be another useful way for kinetic stability analysis 
–  Semi-analytic calculations have been well-benchmarked (MISK, MARSK, PENT)  
–  Particle simulation could give new physics in the kinetic stability analysis by tracking 

realistic orbit trajectories 
–  Should extend the previous benchmarking work between MARS-K and HAGIS 

l=0!

l=1! l=2!

δWK resonance!
(unclosed orbit)!

Analytic integration of resonant operator in the kinetic theory 
is difficult, due to complicated bounce orbit 

•  Integration along bounce orbit may not be 
well-defined, unless orbits are closed 

–  Bounce orbits are closed when NTV 
resonances occur (nωE=lωb) 

•  Dominant contribution from resonant particles 
•  Agreement between theory and particle code 

–  Resonance frequencies for δWK are shifted 
•  Bounce integration can be poor due to 

unclosed bounce orbit 
–  Semi-analytic integration of kinetic energy 

could be inaccurate and overestimated 
•  Bounce orbit phase can be actually mixed, 

thus transport can be smaller 
•  Closed orbit assumption can be broken 
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[Y. Liu, POP (2008)] !

NTV resonance (closed orbit)!
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Preliminary Test in Solov’ev Equilibrium Compared to PENT 
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•  Particle simulation largely agrees with semi-analytic calculation in NTV, but 
disagrees in kinetic potential energy 

–  Solov’ev equilibrium with single rational surface 
–  Consistent collisionality dependency and agreement in quantity for NTV 
–  Disagreement in kinetic potential energy 

•  Re(δWK) by PENT: similar trend and comparable quantities to NTV in low collisionality 
•  Re(δWK) by POCA: less-similar and noisy trend, smaller than NTV by 1~2 orders of magnitude  

POCA!
PENT!

 NTV!
 Re(δWK)!

[N. Logan, Submitted] !
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Preliminary Test of Particle Simulation for δWk:  
Resistive Wall Mode in NSTX (n=1) 
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0.2ωexp!
0.4ωexp!
0.6ωexp!
0.8ωexp!
1.0ωexp!
1.2ωexp!
1.4ωexp!
1.6ωexp!
1.8ωexp!
2.0ωexp!

Rotation "
Unstable!

•  Test marginally stable n=1 resistive wall mode discharges in NSTX 
–  Revisit excellent work by Columbia U using MISK 
–  Re(δWK) by POCA smaller than semi-analytic prediction by MISK 

•  NTV torque can be greater than δWK by an order of magnitude 
•  Stability may the same, but path to the (un)stable condition can be different 

–  This is a preliminary result; careful checks must be followed 
•  Benchmark with MISK, MARS-K, PENT in the simplified condition  

[J. Berkery, PRL (2010)] !

NSTX shot 121083, 0.475s! NSTX shot 128856, 0.529s!
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Summary and Future Work 
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•  Particle orbit motion is a essential element to explain the toroidal 
momentum transport in the perturbed tokamaks 

–  Distortion of banana orbits, interaction with collision and precession 

•  Guiding-center particle simulation is a useful tool for NTV study 
–  Verify and validate theories, analyze and predict experiments, investigate new physics 

•  Particle simulation can contribute to kinetic stability analysis 
–  Accurate bounce orbit description with finite orbit width effects may improve a 

prediction of kinetic potential energy   
–  Rigorous benchmarking study with semi-analytic stability codes is required before 

experimental application 
•  Start with nonresonant field in the simplified configuration 
•  Compare and assess effects by collision, rational surfaces, rotation, fast ions 
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Back-up 
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Rotational resonances can enhance radial particle transport 
by suppressing random phase-mixing 
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•  Semi-analytic NTV theory represents the fundamental NTV physics 

–  Resonance frequency condition by particle’s bouncing class l 
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Resonance!

[K. Kim, PRL (2013)] !

•  NTV enhanced by the ExB rotation resonant 
to l=1 bounce-harmonic resonance 

–  Important driving mechanism of NTV in the 
fast rotating plasmas 

–  Appear even in slow rotating plasma due to 
Maxwellian energy distribution 

–  Appear every flux surface due to multi-
harmonic magnetic perturbations 
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NTV prediction can be improved with particle simulation 
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•  Regime analysis indicates complicated overlapping of regimes in NSTX 

•  Bounce-harmonic resonances can dominate NTV transport  

ν-regime! 1/ν-regime!

BH!

1/ν-regime!

Exp. ~3.5Nm 
POCA ~2.7Nm 
Theory ~0.5Nm!
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Consistent NTV profile and total NTV was obtained in DIII-D 
n=3 magnetic braking 

•  Application of POCA to DIII-D n=3 magnetic braking (in QH mode 
experiments) using IPEC δB gives a consistent NTV  

DIII-D #145117 (Burrell, Garofalo) ~ 3Nm!

IPEC-PENT ~ 2.8Nm!

IPEC-LAR ~ 2.6Nm!

POCA ~ 2.9Nm!
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Various braking profiles are predicted in NSTX/NSTX-U 
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NTV by Midplane coils in NSTX ! Midplane n=3  NCC n=1  NCC n=3  NCC n=4  NCC n=6!

•  POCA predicts variability of braking profiles by Midplane and NCC  
–  Midplane coils can drive broad (n=2) or peaked (n=3) NTV profiles 
–  (Full and/or partial) NCC can provide various braking by n=1 ~ 6, depending on phases 
–  Polynomial degree for fitting δB should be carefully selected in high-n (=4, 6) cases for 

better radial resolution in NTV calculations (broad edge braking?) 


