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Motivation

« Accurate description of guiding-center particle motions is essential for neoclassical
transport in the nonaxisymmetric magnetic perturbations

— Drift-kinetic &f particle code: POCA (Particle Orbit Code for Anisotropic pressures)
» Guiding-center orbit motions on flux coordinates
* Fokker-Plank equation with pitch-angle scattering conserving toroidal momentum

— Benchmarked for neoclassical transport in axisymmetry
— Verify basic NTV physics and analyze NTV torque in magnetic braking experiments

« 3D neoclassical theory found equivalence of NTV and kinetic potential energy
— Mathematically proved, numerically verified

— ldentical form but different resonant conditions depending on rotation and collision
» Different feature can be captured by particle motion

* Neoclassical particle simulation can be a useful tool for kinetic stability analysis
— Benchmarked with semi-analytic theory for NTV study
— Kinetic potential energy can be calculated from NTV torque in a fully numerical method
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Outline

« Numerical verification of NTV physics with particle simulation
» Unification of NTV and kinetic potential energy
» A potential application of particle code to kinetic stability study

 Summary and Future Work
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Fundamental NTV physics can be described by drift-kinetic
particle motions in perturbed tokamaks

« Semi-analytic NTV theory represents the fundamental NTV physics
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6B Resonance Neoclassical offset

Banana orbits in 2D and 3D w/o collisions
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Quadratic 6B Dependency of NTV

« Semi-analytic NTV theory represents the fundamental NTV physics
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edX
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<2 9> \/_ns/z

— Particle simulation shows the quadratic 8B dependency of NTV, on the both resonant
and non-resonant flux surfaces

— Useful to particle simulation, enable NTV scaling by B to improve statistics

NTV scan with 6B in the S/mpl/f/ed conf/quratlons
10—

|:| l-IJn—O35 ---- 682 ,«’E
i O l.IJn—05 - ]
D 10_15_ Ol.IJn=O.65 Q,—O'QO /,—‘E
E ; s
< 52 resongntf”’@ ’0,9 ]
T B
-9 10— 3 o'/ ’E,ED 4
e = - non-resonant E
z B —.. Lro
107*F . i
: ,,—Et
10‘5: . . .
0-01 5B/B 0.10 [K. Kim, POP (2012)]

NSTX-U MHD stability control workshop — Neoclassical transport and kinetic stability (Kimin Kim) Nov 20, 2013 5



Rotational resonances can enhance radial particle transport
by suppressing random phase-mixing

« Semi-analytic NTV theory represents the fundamental NTV physics
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6B Resonance
— Resonant field condition shifted to follow path of closed orbit

F) = fi; dﬁ(l{z - sinz(ﬁ/Z))y cos(m - ng = 1)

nml

Phase shift of resonant surface by ExB precession
— Resonance frequency condition by particle’s bouncing class ¢
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[K. Kim, PRL (2013)]
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Rotational resonances can enhance radial particle transport
by suppressing random phase-mixing

« Semi-analytic NTV theory represents the fundamental NTV physics
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Resonance
— Resonance frequency condition by particle’s bouncing class ¢
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Projection of particle trajectory (¢=1) with n=3 fields
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* 3D partICIG transport can be domlnated by We~ 0 (Off-resonance)  (Near-resonance)  (off-resonance)

rotational resonances

— Enhanced transport by precession resonance
at wg~0, and bounce-harmonic resonance at
3we~wy,

— Off-resonance rotations reduce the particle
transport by random phase-mixing

Z (m)
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R (m) R (m) R (m)

[K. Kim, PRL (2013)]
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Neoclassical offset can be identified at zero-torque

« Semi-analytic NTV theory represents the fundamental NTV physics
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Neoclassical offset

— Neoclassical offset rotation is theoretically predicted as
1 dT Vi ofier
Vv =K : K. o=—F"
¢ ,offset c Zl.e Bg d r 1 dTl’
ZeB, dr
— Numerically obtained K, is consistent with theory prediction, indicating the plasma
is in the connected regime
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Particle simulation reproduces predicted NTV physics

« Consistent features of NTV dependency on the collisionality are reproduced
with drift-kinetic particle simulations
— Clear 1/v-regime in the high collisionality with passing particle effects
— Superbanana-plateau (SBP) resonance in the low collisionality without ExB
— v-regime in the low collisionality with small ExB
— Enhanced NTV by bounce-harmonic resonance in the large ExB

_ Small ExB Large ExB
Without ExB (ExB freq > bounce freq) (ExB freq ~ bounce freq)
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Equivalence of NTV and kinetic energy has been
mathematically proved and numerically verified

» 3D neoclassical theory shows kinetic potential energy drives NTV force
— Imaginary part of kinetic energy is equivalent to NTV torque

Tq) = 2in5WK [J.-K. Park, POP (2011)]
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— Lead to unification of NTV theory and RWM kinetic theory

NSTX-U MHD stability control workshop — Neoclassical transport and kinetic stability (Kimin Kim) Nov 20, 2013



Equivalence of NTV and kinetic energy has been theoretically
proved and numerically verified

3D neoclassical theory shows kinetic potential energy drives NTV force
— Imaginary part of kinetic energy is equivalent to NTV torque

T, = 2indW [J.-K. Park, POP (2011)]

E def dK f dx\/_ﬂa/z 6q24/[RNva¢ 6W - E def di fo dxzﬁ 3/2 534/[R(”>W e[

Gumm’ mmm'

» Perturbed magnetic field is expressed as Fourier series

8B,,,) = Y, a,,p,)cos(m® — ng) +b,, ap,)sin(md - ng)

 POCA calculates NTV using perturbed field spectrum
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* Kinetic potential energy can be calculated_from /mag/nary term of NTV

&
_E<6P a cos(m®—-np)+b, sin(md- n(p)]>
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NTV and Wy are almost identical in formalism, but differ in
resonant operators due to phase change

» Plots of resonant operators show different feature in the rotational resonances
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— NTV resonance by bounce-harmonic resonance ExB rotation
— Kinetic potential energy resonance shifted from bounce-harmonic resonances
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Analytic integration of resonant operator in the kinetic theory
is difficult, due to complicated bounce orbit

* Integration along bounce orbit may notbe 7Ty resonance (closed orbit)
well-defined, unless orbits are closed 3 T I
— Bounce orbits are closed when NTV
resonances occur (Nwg=dw,,) 2
Dominant contribution from resonant particles
« Agreement between theory and particle code g‘
— Resonance frequencies for dW are shifted @f’

- =

~~~ ~~~ -
— -

Bounce integration can be poor due to 0 ,'i E
unclosed bounce orbit ~ F-=__ L’ . :
— Semi-analytic integration of kinetic energy -1 7 7 6Wresonance .
could be inaccurate and overestimated ( unclpsed orbit) 1
« Bounce orbit phase can be actually mixed, 2E. . W T
thus transport can be smaller 0 w, 2w, 3w,
Closed orbit assumption can be broken Toroidal rotation (w)

» Particle simulation can be another useful way for kinetic stability analysis
— Semi-analytic calculations have been well-benchmarked (MISK, MARSK, PENT)

— Particle simulation could give new physics in the kinetic stability analysis by tracking
realistic orbit trajectories

— Should extend the previous benchmarking work between MARS-K and HAGIS
[Y. Liu, POP (2008)]
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Preliminary Test in Solov’ev Equilibrium Compared to PENT

« Particle simulation largely agrees with semi-analytic calculation in NTV, but
disagrees in kinetic potential energy
— Solov’ev equilibrium with single rational surface
— Consistent collisionality dependency and agreement in quantity for NTV [N. Logan, Submitted]

— Disagreement in kinetic potential energy
* Re(dWy) by PENT: similar trend and comparable quantities to NTV in low collisionality
* Re(dW) by POCA: less-similar and noisy trend, smaller than NTV by 1~2 orders of magnitude
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NSTX-U MHD stability control workshop — Neoclassical transport and kinetic stability (Kimin Kim) Nov 20, 2013 14



Preliminary Test of Particle Simulation for dW,:
Resistive Wall Mode in NSTX (n=1)

« Test marginally stable n=1 resistive wall mode discharges in NSTX

— Reuvisit excellent work by Columbia U using MISK

[J. Berkery, PRL (2010)]

— Re(d0Wy) by POCA smaller than semi-analytic prediction by MISK

NTV torque can be greater than dW, by an order of magnitude
« Stability may the same, but path to the (un)stable condition can be different
— This is a preliminary result; careful checks must be followed
Benchmark with MISK, MARS-K, PENT in the simplified condition
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Summary and Future Work

« Particle orbit motion is a essential element to explain the toroidal
momentum transport in the perturbed tokamaks
— Distortion of banana orbits, interaction with collision and precession

« Guiding-center particle simulation is a useful tool for NTV study
— Verify and validate theories, analyze and predict experiments, investigate new physics

» Particle simulation can contribute to kinetic stability analysis

— Accurate bounce orbit description with finite orbit width effects may improve a
prediction of kinetic potential energy

— Rigorous benchmarking study with semi-analytic stability codes is required before
experimental application
« Start with nonresonant field in the simplified configuration
» Compare and assess effects by collision, rational surfaces, rotation, fast ions
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Back-up

@ NSTX-U
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Rotational resonances can enhance radial particle transport
by suppressing random phase-mixing

« Semi-analytic NTV theory represents the fundamental NTV physics
1dT

e dy
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— Resonance frequency condition by particle’s bouncing class ¢
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— Important driving mechanism of NTV in the ~_ oos[-Semi-anayticiheory =
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— Appear even in slow rotating plasma due to g 0.00L -
Maxwellian energy distribution § P8 B - ::
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NTV prediction can be improved with particle simulation

» Regime analysis indicates complicated overlapping of regimes in NSTX
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* Bounce-harmonic resonances can dominate NTV transport
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Consistent NTV profile and total NTV was obtained in DIlI-D
n=3 magnetic braking

» Application of POCA to DIII-D n=3 magnetic braking (in QH mode
experiments) using IPEC 8B gives a consistent NTV

10°F
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—~ 15F I |
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Various braking profiles are predicted in NSTX/NSTX-U

« POCA predicts variability of braking profiles by Midplane and NCC

— Midplane coils can drive broad (n=2) or peaked (n=3) NTV profiles

0.6§ C

NTV torque (N/nT)

(Full and/or partial) NCC can provide various braking by n=1 ~ 6, depending on phases
Polynomial degree for fitting 8B should be carefully selected in high-n (=4, 6) cases for

better radial resolution in NTV calculations (broad edge braking?)

NTV by Midplane coils in NSTX

0.5¢

n=2, 2kAt
n=3, 1kAt
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