

Studies of heat and particle loadings in long pulse plasmas and influence on PWI in JT-60U

<u>Nobuyuki Asakura,</u>

T. Nakano, H. Kubo, K. Masaki

Japan Atomic Energy Agency,

1st NIFS-CRC International symposium and 1st Korea-Japan workshop on "Edge Plasma and Surface Component Interactions in Steady State Magnetic Fusion Devices"

NIFS, 2007 May 21-22

Contents

1. Introduction:

Plasma Facing Components in JT-60U Heat and particle control in long pulse Carbon deposition and tritium retention

- 2. Wall-pumping and particle control in long pulse discharges
- 3. Carbon deposition and D/H retention at PFC
- 4. Summary

JT-60U W-shaped divertor with 3 cryo-pumps

Divertor plays an important role in protecting first wall against large heat and particle fluxes.

Particle exhaust of neutrals and He ash (low energy α -particle) is most important issue for steady-state operation.

W erosion and transport have been investigated (2003-2006)

13 W-CFC tiles were installed at 1 toroidal section of outer divertor. W-CFC tile: VPS coating on CFC: 50μm with Re multi-layer (3 layers) summarized by Ueda, et al. 17th PSI (2006).

Ferritic tiles were installed to reduce toroidal field ripple and fast ion loss (2005-6)

Material: 8%Cr 2%W steel Magnetization: ~1.7 T at 573K

Heat and particle control in divertor for long discharge

In many tokamaks, boundary condition is determined by <u>CFC/Graphite-PFC</u> and <u>Inertial/limited-active cooled PFC</u>

	AUG	JET	JT60U	LHD	HT7	TRIAM	TS	ITER
Configuration	div	div	div	Island div	tim	tim	lim	Limiter / divertor
PFC material	C / W	C / Be	С	С	С	Мо	С	C / W / Be
Particle flux > 10 ²² D/m²/s	yes	yes	yes	no (He)	no	no	yes	10 ²³ D-T /m²/s
1 < Te < 10 eV (partial detach)	yes	yes	yes	yes	no	yes	no	1-10 eV on targets
Pulse > 1 min	no	-1 min	~1 min	yes	yes	yes	yes	400s
Power flux 5~10 MW/m ²	yes	yes	yes	no	no	no	yes	10 MW/m ² (+ transient)
Forced cooling	no	no	no	no	no	no	yes	yes

• ITER : long pulse will be maintained also in limiter (30 s)

[G. Federici et al., JNM 313-316 (2003)]

No relevant material mix : data shown here for carbon

• No active cooling (except TS) : data shown here for evolving T^{surf}

Tsitrone, et al. 2006 17th PSI, R-2

Fuel retention is closely related to PFC physics and chemical characteristics.

- Tritium is retained by co-deposition with Carbon, both on plasma facing sides and on remote areas
- Understanding of Tritium Co-deposition is understanding of where and how Carbon is eroded and how Carbon migrates globally and locally

Carbon characteristics change with temperature

Dominant erosion process of graphite (Physical/ Chemical/RES)

D implantation to C materials (W. Möller, J. Nucl. Mater. 1989)

Increase in Carbon erosion

⇒ Increase in Carbon deposition on lower temperature area, and Increase in H/D/T co-deposition Dueterium saturation decreases with increasing temperature.

 \Rightarrow Desorption of deuterium

2. Wall-pumping and particle control in long pulse discharges

Boundary plasma and PSI problems for ITER:

- Erosion by Type-I ELM will determine divertor life-time.
- Tritium retention in PFC (carbon) will determine operation period due to safety limit:

Quantitative understanding of fuel retention mechanism has been progressed by particle balance experiments and PFC surface analysis.

This talk presents:

2-1) Particle balance and control using divertor pumping

2-2) Carbon erosion/ deposition and fuel retention

2-1) Particle balance and control using divertor pumping

"Globally saturated-wall condition" was observed after a few long-pulse discharges

Long-pulse (37s) high-density ELMy H-mode discharges have been repeated to investigate wall retention until wall saturation.

<u>Wall pumping flux</u> was evaluated from "Global particle balance": dN(t)/dt= $\Gamma_{gas}(t) + \Gamma_{NBI}(t) - \Gamma_{div}(t) - \Gamma_{wall}(t)$

 $\rm n_e$ feedback controlled $\rm \Gamma_{gas}$ to maintain high $\rm n_e~(>0.5~n^{GW})$

For early few discharges, wall-pumping rate was decreased during a discharge: part of injected particles were accumulated at PFC surfaces.

Nakano, et al. 2006 17th PSI, I-7 Kubo, et al. 2006 21st IAEA, EX-P4-11

Under saturated wall condition, where outgas was observed, density was maintained by divertor pumping (~3x10²¹D/s).

High-density (n_e/n^{GW}~0.85) plasma was maintained with divertor detachment by divertor pumping (~8x10²¹ D/s).

Wall-pumping/outgas in "particle balance" was closely related to wall temperature, rather than injected flux.

Outgas was increased with wall temperature

Similar characteristics of wall-pumping/ outgas depending on ΔT^{surf} were observed for baking temperatures of 150°C and 300°C.

Outgas was relatively smaller for low power P_{NB} (L-mode)

Note: Difference between the 150°C and 300°C cases is mostly attributed to difference in the outer strike point position.

Wall characteristics between two tokamaks are different for similar number of fuelling particles (10²³-10²⁴D):

 PFC temperature increased (JT-60U)/ mostly maintained(TS).
 Studies of C-deposition and bulk diffusion in PFC/pump geometry, base temperature, etc. have been in progress.

Response of wall-pumping during diveror pumping

Dynamic response of wall-pimping/ retention was investigated by changing pumping speed, in stead-state plasma (L-mode).

Shutters of two pumps opened at t = 20s (from 1 pump to 3 pumps): identical plasmas (n_{a} , P^{div} , recycling flux) were maintained.

Wall characteristics changed from "pumping" to "outgas" with increasing divertor pumping flux.

 Γ_{wall} changed from 2x10²⁰ (*wall pumping*) to -6x10²⁰ D/s (*outgas*) in ~1s at t = 20s, just after Γ_{div} was increased from 0.8x10²¹ to 1.6x10²¹ D/s.

Similar characteristics of outgas/ wall-pumping from PFC with/ without divertor pimping were reported in DIII-D(without gas puffing) by R.Maingi, et al. Nucl. Fusion 36 (1996) 245

Retention mechanism/ condition (Γ_{wall}) changed with Γ_{div} .

Since both Γ_{NB} and Γ_{gas} are comparable before and after opening, wall-retention mechanism/condition (Γ_{wall}) may change with Γ_{div} or P^{div}. Dynamic retention may decrease with decreasing plasma or neutral flux suggesting large divertor pumping is for reduction of wall-retention?

$$\frac{d}{dt} N_{p} = \Gamma_{NB} + \Gamma_{gas} - \Gamma_{div} - \Gamma_{wall}$$

$$Const. N_{p} - \Gamma_{NB} - \Gamma_{gas}$$

$$\Gamma_{div} + \Gamma_{wall} - \Gamma_{NB} + \Gamma_{gas} = const.$$

Dynamics of divertor/SOL plasma will be also investigated to model wall retention process.

2-2) Carbon erosion/ deposition and Fuel retention

Deposition layers (max. ~200μm) were seen at inner target, while erosion was dominant at outer divertor: ~40% of deposition may be originated from the first wall tile Large local deposition was seen in shadow area at outer dome side

Large D+H retention was observed at outer dome (dep. layer): D and H tends to be remained at lower T^{surf} or ΔT^{surf} area.

Smaller D/H represents H-replacement just before ventilation: Large D retention at outer dome: *low temperature* and *small H plasma flux.*

Co-deposition was observed over C-deposition layers

Implantation was limited near eroded target surface (a few μ m) Co-deposition produced flat depth H+D/C profile on inner target & dome

Averaged retention rate was evaluated in co-dep. layers: estimated retention of ~2x10²¹ in 30s discharge are small

Inner divertor

Integrated neutral beam injection time: 2 x 10⁴ s Inner divertor surface : 8.8 x 10²² atoms/m² Area : 4.4m²

H+D retention rate 2 x 10¹⁹ atoms/s

H+D retention rate : 1.2 x 10 ¹⁹atoms/s *Estimated from carbon deposition rate and (H+D)/C 6 x 10²⁰ C/s, 0.02

Outer dome wing

Integrated neutral beam injection time: 7.5 x 10³ s Outer dome wing surface : 10 x 10²² atoms/m² Area : 2.6m²

H+D retention rate 3.5 x 10¹⁹ atoms/s

H+D retention rate : 5.9 x 10¹⁹atoms/s *Estimated from carbon deposition rate and (H+D)/C 4.5 x 10²⁰ C/s, 0.13

Large D/C was found under dome at base-T (150°C) region: averaged retention rate (3-6x10¹⁹ D/s) was comparable to that on PFC.

D+H was measured at first wall surface (base T region)

C: Erosion/ Deposition was often observed at Outer/ Inner wall surfaces H+D: Retention was comparable to that at divertor.

(H+D)/C profiles near wall surface showed implantation/ codeposition: ratio was comparable to co-deposition at divertor.

C-deposition rate in JT-60U was comparable ⇔ (H+D)/C was 1-2 orders of magnitude Lower: Higher base temperature(300C until 2002, now 150C) ?

Device/campai gn	Average ion flux (lim/div) (D ⁺ -T ⁺ s ⁻ ¹)	Carbon depositi on rate (C s ⁻¹)	Averag e fuelling rate (D-T s ⁻ ¹)	Carbon depositi on ratio C/ (D ⁺ - T ⁺)	Fuel retention rate (D-T s ⁻¹)	Fuel retention fraction (ret. D-T/ inj. fuel)
JET MKIIA div.	3.8 10 ²²	6.5 10 ²⁰		0.037	5.8 10 ²⁰ (D/C=0.8)	0.17 (in DTE1) ¹ 0.11 (in DTE1) ²
JET MKIIGB div.	4.3x10 ²²	4.3 10 ²⁰	3.2 10 ²¹	0.01	1.25 10 ²⁰ (D/C=0.3)	0.03 ³
TFTRT campaign						0.16 ¹
AUG		3.5 10 ²⁰				0.0353 ³ 0.1 ⁴
TEXTOR	9x10 ²¹	2.5 10 ²⁰	1.5 1020	0.029	1.6 10 ¹⁹	0.08 ³
Tore Supra			4.6 10 ²⁰	_	2.5 10 ²⁰⁽⁵⁾	0.55
JT60-U		3-6x10 ²⁰ ep. rate o	n		5.3x10 ¹⁸ (D/C=0.02	=0 saturation

1T-retention after (non-mechanical) T-cleaning, 2T-retention after long term outgassing and mechanical removal of accessible T-deposits, 3D-retention from post mortem analysis, 4D-retention from fuel balance, 5D-retention from fuel balance in dedicated long pulse discharges.

4. Summary

Particle control using divertor pumping and *Characteristics of Carbon PWI* has been investigated in long pulse discharges on JT-60U:

- Under "globally saturated wall" (outgasing) condition, plasma density (n_e/n^{GW}~0.65) was maintained by divertor pumping (~3x10²¹ D/s).
- High-density (n_e/n^{GW}~0.85) plasma with detached divertor was maintained by divertor pumping (~8x10²¹ D/s).
- Characteristics of wall-pumping/ outgas in "particle balance" (Γ_{wall}) was closely related to wall temperature and/or its change.

At the same time, influences of C-deposition in PFC/pump geometry, base temperature, etc. have been investigated.

• Dynamic retention: Γ_{wall} can be change with divertor plasma flux (Γ_{div}) and/or neutral pressure (P^{div}).

Analysis of Carbon PFC surface:

- D+H co-deposition locations were inner diviverotr and outer dome edge: estimated retention of ~2x10²¹ D in 30s discharge are small.
- Large D/C location was determined under dome in recent operation (150C).
- Erosion/deposition areas were seen in first wall: relatively large D/C.