PSI Issues in ITER

Presented by M. Shimada, ITER Organization

 1st NIFS-CRC International Symposium and 1st Korea-Japan Workshop
 on Edge Plasma and Surface Component Interactions in Steady State Magnetic Fusion Devices
 21-22 May, 2007, National Institute for Fusion Science

ITER

- Unique fusion device with long DT burn ~500 MW(Q>10), inductive pulse length ~400s
- Ultimate aim of steady state operation (Q>5)
- Significant alpha heating: p(r) will be determined by plasma
- Steady state operation : j(r) will be determined by plasma
- Plasma stored energy 1-2 orders of magnitude larger than in present devices
 - Heat loads at disruption and ELM expected to be at least x5 higher than present devices; which could shorten the lifetime of PFC
- Large nuclear project
 - Requires long-term planning and coordinated R&D

Strategy

 Conservative design •Step-wise programme (HH, DD, DT, Ip, heating power, etc) •Flexibility (wide operation space, replaceable divertor, H&CD) Diagnostics Experimental tools (e.g. gas injection+neural network/disruption, frequent pellet/ELMs)

 Physics R&D will be continued during construction and operation

ITER Operational Plan

* The burn time of 440 s includes 400 s flat top plus 40 s of full power neutron flux to allow for contributions during ramp-up and ramp-down ** Average fluence at first wall (neutron wall load is 0.56 MW/m² on average and 0.77 MW/m² at outboard equator)

Plasma-Facing Components on the day one (reference)

First wall and limiter: beryllium
Low Z, getters oxygen
Retains T, but releases T at lower temperature

Separatrix hit point: CFC • withstands a wide range of plasma parameters

T retention problem

Divertor dome and baffle: W

The divertor has a modular structure, replaceable within 4 months The final selection of 1st divertor PFC will be made in 2010

Major uncertainties in PWI

- Sol/divertor transport model (D, χ , v, P_{rad}, Z_{eff}), A&M data (high Z, C_mH_n)
- T retention, dust, mixed material effects
- Disruption, ELMs, blobs
- Steady state control
- High Z PFM

Sol measurement suggests sol heat flux decay length ~ 5 mm

Major uncertainty: sol flow and impurity transport

blob

Figure 5. Movie frames of edge turbulence at $n/n_{\text{GW}} = 0.8$. The ovals locate the 'birth' and motion of a blob. The separatrix is also shown. The emission is He I, and the time between frames is 4 μ s.

Figure 4. SOL density profiles in LSN L-mode discharges $I_p = 1$ MA and $I_p = 0.8$ MA (*a*); time traces of the ion sat currents in far SOL (R = 233 cm) of the two discharges (l

 $\rm N_{e}$ and $\rm T_{e}$ decay as the blob move radially. T_{i} decays as rapidly?

Figure 7. Radial profiles of the blob peak densities (*a*), temperatures (*b*) and radial velocities (*c*) in SAPP discharges at $I_p = 1.0$ MA with varying average discharge densities. Data from the $I_p = 0.8$ MA discharge of figure 3 are shown as well.

Tritium retention issue

 Assumption of in-vessel mobilisable tritium = 1kg

Extrapolation from exp.
 Is highly uncertain

• Use of CFC is limited in ITER

• small addition of Be reduces T retention

Tritium retention

- Safety assumption : in-vessel mobilisable tritium of 1 kg
- Hard to measure in-vessel mobilisable tritium
- $W_{in-vessel} = W_{in-plant}$ $W_{out-vessel}$ $W_{decay} W_{burn}$
- Burned tritium ~ 4.6 kg
- The error of fusion power measurement ~ 10%
- The other error < 100 g
- The global power balance and He-4 measurement could be useful

Wall conditioning

- Wall conditioning is required to maintain low levels of impurity and particle recycling and to control tritium retention
- Steady magnetic field will preclude GDC during operation
- During operation, ICWC, ECWC and low Ip discharges will provide wall conditioning
- High temperature baking of divertor cassettes (~350 C) is under study
- The possibility of baking with oxygen is under study

dust

- Size:10's nm~10 μm
- Possibly radiative, chemically reactive
- Formation mechanism need to be understood
- Measurement methods and removal methods need to be developed
- Electrostatic collection could be useful

Disruption mitigation

- At the thermal quench, most of the stored energy will be lost and transported to PFC
- Runaway electron could damage the first wall
- A significant fraction of the stored energy is often lost before the thermal quench
 - Energy lost through L-H transitions.....
- => specify fewer ITER high power disruptions for ITER reference scenario
- Advanced scenario (ITB and high-β) disruptions are the most dangerous: All the stored energy comes out rapidly

- The disruption would shorten the lifetime of PFC
- The disruption should be mitigated by a system e.g. neural network + massive impurity gas injection
- Suppression of runaway ele should be demonstrated

Disruption should be mitigated or avoided for longer PFC lifetime

Remaining thickness

Vertical displacement event

- VDE occurs when the vertical position control is lost (e.g. malfunction of power supply, sensors...)
- At the thermal quench, FW will melt
- The movement of plasma is slow (~0.5 s), which enables early detection and mitigation

ELM mitigation

 Heat flux associated with unmitigated type-I ELMs could shorten the lifetime of PFC

Pellet pacemaking could provide efficient ELM mitigation

Discharge scenarios free of type I ELMs are developed

• ELM mitigation/elimination with external coils is under investigation

High Z PFM

- Adoption of high Z PFM would preclude some operation regimes (e.g. peaked density, infrequent ELMs, low n_{sep})
- Disruption avoidance/mitigatio n should be developed

Figure 13. Peaking of the W concentration (c_W) as a function of background density. Discharges with pure NBI heating (black circles) show the strongest peaking, whereas central ECRH reduces the c_W peaking significantly already at low additional heating power.

PWI in steady state

- Heat and particle control is very important for steady state operation
 - Impurity control and heat exhaust with peaked density and low separatrix density
 - Heat load due to high energy particles expelled at TAE could be an issue

Example of successful collaboration

Design assessment of limiter using 3D sol code

First limiter

Second limiter 10mn behind of the first limiter

M. Kobayashi / G. Federici

Summary

- Issues:
 - Disruption control(prediction, mitigation, avoidance)
 - ELM mitigation (pellet, external coils, discharge scenarios)
 - Tritium retention(understanding, removal)
 - Dust (understanding, removal)
 - Sol transport (blob), impurity transport (high Z)
 - Steady state control
 - Wall condiitoning (with steady B)
- Most of these problems are common across the different confinement schemes