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Outline: Experimental studies of snowflake 
divertor configuration in NSTX and TCV 

  Tokamak divertor challenge 
  Snowflake divertor configuration  
  Snowflake divertor in NSTX and TCV 
•  Magnetic properties and control  
•  H-mode confinement and pedestal  
•  Divertor heat flux mitigation and partitioning 
•  Modeling  
•  Conclusions and outlook 
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Various techniques developed for reduction of heat 
fluxes q|| (divertor SOL) and qpeak (divertor target) 

  Recent ideas to improve standard divertor geometry 
•  Snowflake divertor (D. D. Ryutov, PoP 14, 064502 2007) 
•  X-divertor (M. Kotschenreuther et. al, IC/P6-43, IAEA FEC 2004) 
-  Local (strike point) flux expansion 

•  Super-X divertor (M. Kotschenreuther et. al, IC/P4-7, IAEA FEC 2008) 
-  Local (strike point) flux expansion at large R (major radius) 
-  Being implemented in MAST Upgrade 
-  See T. Petrie et al., Talk O36 on Friday, 25 May 2012 

fexp =
(Bp/Btot)MP

(Bp/Btot)OSP

qpk !
Pheat (1− frad)fout/totfdown/tot(1− fpfr) sinα

2πRSP fexpλq||
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Snowflake divertor geometry is “advanced” w.r.t. 
standard X-point divertor 

  Snowflake divertor 
•  Second-order null 

-  Bp ~ 0 and grad Bp ~ 0 (Cf. first-order null: Bp ~ 0) 
•  Obtained with existing divertor coils (min. 2) 
•  Exact snowflake topologically unstable 
•  Deviation from ideal snowflake: σ = d / a 

-  d – distance between nulls, a – plasma minor radius 

  Predicted geometry properties (cf. standard divertor) 
•  Increased edge shear: ped. stability 
•  Add’l null: H-mode power threshold, ion loss 
•  Larger plasma wetted-area Awet  : reduce qdiv 

•  Four strike points    : share qII 
•  Larger X-point connection length Lx  : reduce qII 

•  Larger effective divertor volume Vdiv  : incr. Prad , PCX 

  Experiments: TCV and NSTX 

   
           snowflake-minus 
snowflake-plus 

Exact 
snowflake 
divertor 

D. D. Ryutov, PoP 14, 064502 2007 
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+
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  Conventional aspect ratio 
A=3.5-3.7 

  Ip ≤ 1.0 MA, BT ≤ 1.5 T 
  Pin ≤ 4.5 MW (ECH)  
  Graphite PFCs 
  Open divertor (not 

optimized) 
  Create magnetic 

configuration (SF, SF+, 
SF-) with shaping coils 

NSTX and TCV: Snowflake divertor configurations 
obtained with existing divertor coils 

TCV 
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TCV:  Investigate the characteristics of the entire 
range of snowflake configurations 

  Variable configuration: vary location of X-points over a wide range 
•  All configurations are obtained under feed-forward control 
•  Experiments have so far focused on SF+


  Investigate possibility to distribute exhaust power on more than the two 
strike points


[F. Piras, et al., Plasma Phys. Control. Fusion. 51 (2009) 055009]


•  Evaluate fexp 
and CL at 
location of 
max. fexp
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NSTX and TCV: Snowflake divertor configurations 
obtained with existing divertor coils 

  Aspect ratio A=1.4-1.5 
  Ip ≤ 1.4 MA, BT= 0.45 T 
  Pin ≤ 7.4 MW (NBI)  
  λq = 5-10 mm 
  High divertor heat flux  

•  qpeak ≤ 15 MW/m2 
•  q|| ≤ 200 MW/m2 

  Open divertor 
  Graphite PFCs with lithium 

coatings 
  Asymmetric snowflake-

minus σ = 0.4-0.5 
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NSTX: Plasma-wetted area and connection length 
are increased by 50-90 % in snowflake divertor 

  These properties observed in first 30-50 % of SOL width (λq~6 mm) 
  Btot angles in the strike point region: 1-2o, sometimes < 1o 

•  Concern for hot-spot formation and sputtering from divertor tile edges 
•  Can be alleviated by q|| reduction due to radiative detachment and power 

partitioning between strike points 
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Close-loop feedback control of divertor coil 
currents is desirable for steady-state snowflake 

  All configurations are obtained 
reproducibly under feed-forward 
control in TCV and NSTX 

  In NSTX 
•  Developed X-point tracking 

algorithm that locates nulls and 
centroid 

•  Algorithm tested on NSTX 
snowflakes successfully 

•  Implementing snowflake control in 
digital plasma control system 
-  Collaboration between NSTX-U 

and DIII-D 

M.A. Makowski & D. Ryutov, “X-Point Tracking 
Algorithm for the Snowflake Divertor”  
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NSTX: good H-mode confinement properties and core 
impurity reduction obtained with snowflake divertor 

  0.8 MA, 4 MW H-mode  
  κ=2.1, δ=0.8 
  Core Te ~ 0.8-1 keV, Ti ~ 1 keV 
  βN ~ 4-5 
  Plasma stored energy ~ 250 kJ 
  H98(y,2) ~ 1 (from TRANSP) 
  ELMs 

  Suppressed in standard divertor 
H-mode via lithium conditioning 

  Re-appeared in snowflake H-
mode 

  Core carbon reduction due to 
•  Type I ELMs 
•  Edge source reduction 

•  Divertor sputtering rates reduced due 
to partial detachment 
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TCV:  Snowflake configuration leads to an 
improved kink-ballooning stability 

[F. Piras, et al., Phys. Rev. Lett. 105 (2010) 155003]


  H-mode threshold unchanged (power 
and density dependence) 

  Modest confinement improvement (may 
be due to increased core shaping) 

  Frequency of type-I ELMs decreases 

•  Experiment consistent with improved kink-
ballooning stability 

•  Even though energy loss per ELM 
increase, the average energy lost through 
ELMs decreases significantly 
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NSTX: Access to radiative detachment with 
intrinsic carbon in snowflake divertor facilitated 

  Snowflake divertor (*): PSOL~3-4 MW, fexp~40-60, qpeak~0.5-1.5 MW/m2 
  Low detachment threshold 
  Detachment characteristics comparable to PDD with D2 or CD4 puffing 
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NSTX: Significant reduction of divertor heat flux 
observed between ELMs in snowflake divertor 
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  Attached standard divertor -> snowflake transition -> snowflake + detachment 
  PSOL ~ 3 MW (PNBI = 4 MW)

  Qdiv ~ 2 MW 
   
 
-> Qdiv ~ 1.2 MW 
       -> Qdiv ~ 0.5-0.7 MW


  Divertor C III 
and C IV 
brightness 
profiles 
broaden




V. A. SOUKHANOVSKII, 20th PSI, Aachen, Germany, 23 May 2012  18 of 24 

NSTX: Impulsive heat loads due to Type I ELMs 
are mitigated in snowflake divertor 

  H-mode discharge, WMHD ~ 220-250 kJ 
•  Type I ELM (ΔW/W ~ 5-8 %) re-appeared 

•  ELM peak heat flux decreased  
  Theory and modeling highlight (T. D. 

Rognlien et al., P1-031) 
  Reduced surface heating due to 

increased ELM energy deposition time 
  Convective mixing of ELM heat flux in 

null-point region -> heat flux partitioning 
between separatrix branches 
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TCV:  In L-mode σ has to be small to activate a 
secondary strike point 

  SF+ configuration: secondary strike 
points are in the private flux region 
of the primary separatrix 

  Sigma scan in Ohmic L-mode 
shows activation of the secondary 
strike points (PSP3/PSP1~10%) only 
for small values of sigma (σ<0.2) 

  Heat flux estimate from Langmuir 
probes (LP) 
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TCV:  ELMs activate secondary strike points at 
larger values of σ


  Measure transient heat fluxes 
during ELMs in ECH H-
modes with fast infra-red (IR) 
cameras 

•  Sampling time ≥ 40µs 
  Secondary strike point (SP3) 

receives significant power at 
relatively large values of 
sigma 

  Power redistribution during 
ELMs consistent with poloidal 
beta-driven convection 
around the null-point 
 [D.D. Ryutov, et al., APS DPP 2011] 
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UEDGE modeling shows a trend toward reduced 
temperatures, heat and particle fluxes in snowflake divertor 

  2D multi-fluid code UEDGE   
•  Fluid (Braginskii) model for 

ions and electrons 
•  Fluid for neutrals 
•  Classical parallel transport, 

anomalous radial transport 
-  D = 0.25 m2/s 
-  χe,i = 0.5 m2/s 

Core interface: 
•  Te,i = 120 eV 
•  ne = 4.5 x 1019 

Rrecy = 0.95  
Carbon 3 % 
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Snowflake geometry is a leading heat flux mitigation 
candidate for NSTX-U 

  Challenge for NSTX-U divertor 
•  2-3 X higher input power (PNBI < 12 MW, Ip <  2 MA 
•  30-50 % reduction in n/nG 

•  3-5 X longer pulse duration 

  Projected NSTX-U peak divertor heat fluxes up to 
25-40 MW/m2  

  Snowflake divertor projections to NSTX-U 
optimistic 

•  UEDGE modeling shows radiative detachment of 
all snowflake cases with 3% carbon and up to 
PSOL~11 MW 

•  qpeak reduced from ~15 MW/m2 (standard) to 0.5-3 
MW/m2 (snowflake) 

NSTX-U  
snowflake 
simulation
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TCV and NSTX studies suggest the snowflake divertor configuration 
may be a viable divertor solution for present and future tokamaks 

•  NSTX 
-  Core H-mode confinement unaffected, core carbon reduced 
-  Pedestal stability modified: Type I ELMs re-appeared  
-  Divertor heat flux significantly reduced 

»  Steady-state reduction due to geometry and radiative detachment 
»  ELM heat flux reduction due to power sharing, radiation and geometry 

-  Proposing experiments and control development at DIII-D, planning 
snowflake divertor for NSTX-U 

•  TCV  
-  Can create a wide range of snowflake configurations 
-  Heat flux at a secondary strike point increases with decreasing σ 
-  ELMs activate secondary strike point at larger values of σ 

-  Improved edge stability leading to less frequent Type I ELMs 
-  Current upgrades will improve heat flux measurements at the target 

-  Additional Langmuir probe array will also cover LFS strike point 
-  Improved IR system will allow ELM resolved measurements  
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Backup slides 
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Impulsive heat loads due to Type I ELMs are 
mitigated in snowflake divertor 

  H-mode discharge, WMHD ~ 220-250 kJ 
•  Type I ELM (W/ΔW ~ 5-8 %) 

Steady-state                     At ELM peak  


