Diagnostic Development for NSTX

M.G. Bell

Princeton Plasma Physics Laboratory

for the NSTX National Team

presented at the

2nd IAEA Technical Committee Meeting on Spherical Tori & 7th International Spherical Torus Workshop

1-3 August, 2001, São José dos Campos, SP, Brazil

Topics

- Current diagnostic data for confinement and stability
- Diagnostics for boundary physics and wall interactions
- Planned diagnostic upgrades and development
- Development of plasma control

_

Diagnostics Installed Aug 2001

* Diagnostics in operation

Confinement Studies

- * Magnetics for equilibrium reconstruction
- * Diamagnetic flux measurement
- * Thomson scattering (10 ch., 60Hz)
- * 2 mm interferometer (single chord)
- * VB detector (single chord)
- * Bolometer array (midplane tangential)
- * X-ray crystal spectrometer $(T_i(0), T_e(0))$
- * X-ray pulse height analyzer
- Charge Exchange Recombination
 Spectroscopy (CHERS): T_i & v_b (18 ch.)
- * Neutral particle analyzer (central chord)
- Electron Bernstein wave radiometer
- FIReTIP 119µm interf'r/polarim'r (2 ch) [UCD]

MHD/Fluctuations

- * High-n and high-frequency Mirnov arrays
- * Soft x-ray arrays (3) [JHU]
- * Edge reflectometer [UCLA]
- * Edge fluctuation imaging [LANL]
- * Fast ion loss probe

• Diagnostics in commissioning phase

Plasma Monitoring

- * Fast visible camera [LANL]
- * VIPS-1: Visible spectrometer (reticon)
- * VIPS-2: Visible spectrometer (CCD)
- * SPRED: UV spectrometer (CCD)
- * GRITS: VUV spectrometer [JHU]
- * Fission chamber neutron measurement
- * Fast neutron measurement
- * 1-D CCD H_{α} camera [ORNL]
- * Visible filterscopes (H_{α} , OII, CII) [ORNL]
- * Scrape-off layer reflectometer [ORNL]
- Locked mode coils
- IR camera

Diagnostics in bold will be highlighted in this talk

Comprehensive Magnetic Diagnostics for EFIT Analysis

- ♦ B-field coils, flux loops and coil currents provide data for EFIT analysis
 ⇒ full configuration and global plasma parameters as functions of time
 - time resolution to 1ms for transient events
 - Now working to incorporate kinetic profiles in analysis

Magnetic Sensors Also Used for Fluctuation Studies

 Outboard Mirnov coils and Scanning Edge Reflectometer [UCLA] detect fluctuations in the Alfvén frequency range excited during NBI

Arrays of Ultra-soft X-ray Detectors Reveal MHD Mode Structure and Measure Radiated Power

- USXR/SXR capability enables simultaneous observation of peripheral (2/1) and core (1/1) MHD modes
- Inversion of data from tangential array of detectors reveals central peaking of radiated power during ELM-free H-mode

362.5

Upper

USXR

Lower half SXR

half

Multi-Point Thomson Scattering Provides Basic Profiles for Confinement and MHD Stability Studies

- 10 spatial channels with 2 independently timed lasers at 30Hz
 - Pulse separation as small as 0.4ms for
 - diagnosis of reproducible transient phenomena
 - measurement of rates of change
- Calibrated by Rayleigh scattering for absolute density measurement
 - Checked against 2mm and FIR interferometers in quiescent plasmas
- High throughput collection optics and fiber-optic relay for good S/N
- High dynamic ranges in both density and temperature
- Investigating using background light measured between laser pulses to provide radial profile of VB emission for Z_{eff}(R) measurement

High Electron Temperatures during HHFW Heating

 Have confirmed T_e by soft x-ray spectra (PHA, T_e in 1 - 3 keV range) and x-ray line ratio (crystal spectrometer, T_e in 1 - 2 keV range)

EBW Radiometer Shows Potential for T_e Diagnostic

- Fundamental thermal EBW from core can convert to X-mode emission
 - efficiency depends on density scale length at UHR in plasma edge
 - emission increases as edge density profile steepens during H-Mode

Ion Temperature from CHERS and NPA

- CHERS measures Doppler broadening (T_i) and shift (v_{tor}) of CVI line excited by heating NBI
 - Modulated NBI discriminates CX-excited from intrinsic edge emission

- NPA spectra of intrinsic H component during D-NBI
 - Can separately measure slowing-down spectra of energetic D

MGB / ST workshop / 010801-3

Edge Plasma Diagnostics Are Being Developed

- Prototype IR imaging of plasma facing components [ORNL]
- 5 fast neutral pressure gauges installed in divertors & midplane [UW]
- Evaluating fixed Langmuir probes in several divertor tiles
- Exposure coupons used to estimate average particle fluxes [SNL]
- Measuring H_{α} across divertor with high resolution 1D camera [ORNL]

 Evolution of H_α emission from divertor region during H-mode phase

Imaging Emission from Gas Puff Shows Edge Structure

- Images of He line emission from multiple directed gas jets aimed at edge of D plasma (and vice versa)
 - 10µs exposures at 1ms intervals
- Significant change in edge structure occurs at H L transition

MGB / ST workshop / 010801-3

Diagnostic Upgrades in Preparation for Next Run

- Thomson scattering \Rightarrow 20 ch. @ 60Hz
- IR camera \Rightarrow additional camera and views for heat fluxes. [ORNL]
- Fast ion losses \Rightarrow probe with E, pitch angle resolution
- MSE polarimeter first 2 (of 10 final) channels [Nova Photonics]
- Charge Exchange Recombination Spectroscopy (CHERS) ⇒ ~75 ch. in conjunction with MSE collection optics
- Fast scanning edge probe for n_e, T_e, fluctuations [UCSD]
- Neutral particle analyzer \Rightarrow horiz., vert. scan.
- FIReTIP \Rightarrow additional 4 ch. for profile determination [UCD]
- *More robust coils* for B_{pol} measurements, particularly on center stack
- High frequency, up to *5MHz*, Mirnov coils on outboard side

New capability

Diagnostic Development in Next Year, and Beyond

- X-ray imaging diagnostics
 - Pinhole camera for internal flux surface shapes [with U. Wisconsin]
 - Fast (MHz) tangential x-ray camera [Princeton Scientific Instruments]
 - New compact USXR arrays for multiple toroidal views [JHU]
- Microwave interferometer using frequency-swept 1mm source [UCLA]
- 2-D divertor imaging with fast visible camera [Hiroshima U.]
- Laser Induced Fluorescence MSE polarimeter [Nova]
 - Measure emission from energetic H-atoms excited by tunable laser
 - In combination with collisional emission MSE, measure $J_{\phi}(r)$ and $E_{r}(r)$
- Plan to develop fluctuation diagnostics in longer term (not yet funded)
 - Imaging reflectometer \Rightarrow scale for ITG turbulence
 - 1mm small-angle scattering \Rightarrow scale for ETG turbulence

Plans for Real-Time Control System

- Currently operating with flux-extrapolation algorithm from a few measurement loops to provide control of Ip, Z-position and outer gap
 - Preprogram currents for elongation and limiter/divertor configuration
- Next phase will use 4-processor real-time computer operating with
 - Full magnetic sensor data, supplemented with
 - Real-time diagnostic data as it becomes available, *e.g.* MSE
 - rtEFIT algorithm [GA] for control of multiple gaps
 - Control of gas feed valves
- Eventual aim for control of profiles
- Algorithms for CHI startup and transition to inductive sustainment require research and development
 - Need to distinguish toroidal current on open and closed flux surfaces

D. Gates, D. Mueller

Control System Upgrade Hardware

- High Speed low-latency digital data acquisition FPDP + Fiberchannel
 - Capability to handle distributed analog sources
- "Skybolt 2" computer (4 G4 processors at 333MHz ⇒ 10GFlop)
- Expandable up to 64 processors in one chassis
- Up to 768 channels of data
- 50MB/s sustained data rate

Summary

• We have improved diagnostic coverage substantially in the past 2 years

- Detailed analysis of magnetic equilibrium based on external sensors
- Profile diagnostics: MPTS, CHERS, bolometer array, SXR arrays
- Comprehensive spectroscopy
- ⇒ These have enhanced machine capabilities and enabled significant experimental progress
- There are plans for many improvements
 - MSE, multi-chord interferometry, scanning NPA, locked mode coils, edge measurements,... advanced fluctuation diagnostics
- There are major challenges too
 - Improved control system \Rightarrow rtEFIT
 - Real-time control of heating and fueling for profile control
 - CHI control