

Progress in Divertor and SOL Studies in the MAST Tokamak

presented by J-W. Ahn^{1,2} on behalf of

GF Counsell², JW Connor³, RH Cohen³, J Dowling², T Eich⁴, SJ Fielding², A Kirk², P Helander², M Hole², M Price², V Riccardo², DD Ryutov³, A Tabasso², HR Wilson², Y Yang⁵ and the MAST team

¹ Imperial College, London, UK
 ² UKAEA Fusion, Abingdon, UK
 ³ LLNL, Livermore, USA
 ⁴ IPP, Garching, Germany
 ⁵ IPP, Heifei, P.R. China

Contents

- Divertor and SOL characterisation
- ELMs
- Power balance and accounting
- Target heat load amelioration

Divertor and SOL characterisation

Range of new and improved diagnostics

- Improved target probes
- Divertor IR Camera
- Divertor D_{α} Camera
- Mid-plane RP

Characterisation of divertor and SOL plasma

- at all 4 strike zones
- in L and H-mode regimes
- → 'ELM-free' and inter-ELM periods
- During ELMs

- Symmetric (CDN) and asymmetric double-null
 → δr_{sep}>15mm (~upper SND)
 → |δr_{sep}|<3mm (CDN)
 → δr_{sep}<-15mm (~lower SND)
- Ion ∇B drift to lower X-point

SOL width scalings

• Scalings for L-mode SOL heat flux width in CDN

- P_{surf} (surface power density), \overline{n}_e , B_T , and L_c (parallel connection length)
 - → weak/strong negative dependence on P_{surf}/B_T → approx. linear with n_e and L_c $\Delta_h \propto P_{surf}^{-0.05\pm0.06} \overline{n}_e^{0.98\pm0.17} B_T^{-0.71\pm0.18} L_c^{1.03\pm0.31}$
- Scaling based on classical // transport and χ_⊥ from, eg. resistive MHD interchange model

 $\Delta_h \propto P_{surf}^{-2/5} \overline{n}_e^{14/15} B_T^{-14/15} L_c^{16/15}$

OSM-Eirene Modelling - importance of $\nabla_{//}B/B$

- Drives SOL flows
- Mid-plane Mach probe measures M~0.2 - in line with OSM
- Effect ignored in some fluid SOL models

- Key effect:
 - **∇**_{//}**B/B factor 10 larger in ST**
 - \rightarrow Changes in f(<u>v</u>,t)
 - → 'effective' large upstream source term

ELMs

LFS interactions during ELMs

- Strong interactions with LFS reciprocating probe
- Very similar phenomenon now observed on JET

- ELMy H-mode shows clear reduction in edge fluctuations
- ELM bursts impact only LFS

ELMs not observed at HFS

ELM losses dominated by convection

- High Pedestal collisionality: <vpre>vped *> ~ 2.1 ± 1.3
- TS profiles before and after ELM show $<T>\Delta n >> <n>\Delta T \rightarrow convective losses$
- Modest $\frac{\Delta W_{ELM}}{W}$ (< 4%) and $\frac{\Delta W_{ELM} f_{ELM}}{P_{heat}}$ (< 5%)

ELM impacts far into SOL

• Formation of broad outboard n_e and T_e tail at ELM peak on outboard mid-plane TS

Imperial College

OF SCIENCE. TECHNOLOGY AND MEDICINE

- Broad outboard mid-plane D_{α}
- Up to several cm from separatrix

• However, no broadening of target profiles

Strong efflux to LFS mid-plane probe

- j_{sat} at probe during ELM similar to peak strike-point values
- Magnitude uncorrelated to D_{α} intensity, sometimes not observed

Radial efflux up to 20~30cm from separatrix

- ELM ejection on mid-plane reciprocating probe j_{sat} up to 30cm
- Large j_{sat} out to ~10 cm, rapid rise time (< 50 µs)
- Radial expansion velocity: <v_R>~1.0 kms⁻¹
- 'turbulent' leading edge

Possible picture of the ELM structure

- Sum of data may be consistent with 'Cowley' ELM model
- ELM could be non-linear superposition of low and high n ballooning modes
- Forms narrow perturbation to flux surfaces at LFS
- Toroidally and poloidally localised, accelerating radially
- 'Compresses' SOL flux tubes increasing gradients and 'diffusive' losses
- Localisation could explain -
 - → lack of target broadening
 - \rightarrow lack of target D_{α} correlation
- Ballooning nature could explain
 - → LFS bias

Power balance and accounting

Good power accounting by probes

- ~100% of estimated P_{SOL} in L-mode
- ~70% of estimated P_{SOL} in inter-ELM H-mode
- ~50% of ΔW_{ELM}

Power distribution favourable for ST

• In-out power distribution:

\ strong function of δr_{sep} in L-mode
→ >90% outboard in CDN
→ different inter-ELM and during ELMs

- Up-down power distribution:
 - → balanced for CDN with δr_{sep}~2 mm
 → asymmetric due to ion ∇B drift

ELMs have little impact on HFS target q_h

- Modest level of $q_h(q_h < 4 \text{ MWm}^{-2})$
- q_h rises by < 25% at inner target during ELMs
- q_h rises by factor ~3 at outer target during ELMs

Target power amelioration

Target detachment

• Detachment-like phenomena at high n_e (>3.5x10¹⁹ m⁻³)

Imperial College

OF SCIENCE. TECHNOLOGY AND MEDICINE

→ target j_{sat} and q_h 'roll-over'
 → rise in target D_γ/D_α ratio

but

- → very low $n_t \sim 3x10^{18} \text{ m}^{-3}$ → $\lambda_{ion} \sim 50 \text{ cm}$
- Possibly related to 'leading edges' on divertor components or large 'mirror force' in ST SOL

Time (s)

SOL broadening by divertor biasing

Induce convective cells by divertor biasing:

- Toroidally asymmetric biasing
- ➔ Potential variations in SOL
- \rightarrow ExB driven convective cells
- ➔ SOL broadening
- → Reduction of power density

Areas of different potential generate convection cells driven by the ExB drift.

Schematic of lower outer divertor region showing location of biased divertor ribs (red)

Locally Broadened SOL width

- Effect only at lower, outer SP
- Unbiased rib:
 - λ_q slightly broadened
 P_{peak} reduced by 30%
- Biased rib:

 λ_q factor 3 broadened
 P_{peak} rises
- Rise in P_{peak} to biased rib result of large $P_{bias}/P_{\Omega} \sim 0.3$

Conclusions

Boundary plasma research in MAST: contributing and unde rstanding of the ST physics as well as in conventional tokam aks and ITER preparations

- → SOL width scalings: several dependencies on plasma parameters
- → Importance of mirror force term in ST: $|\nabla_{//}B/B|$
- → Far ranging radial efflux during ELMs: additional first wall erosion if exhibited in ITER
- → ELM losses nearly 100% to LFS: in-out ratios in SND devices probably dominted by // transport in SOL
- → ELM losses may be consistent with 'Cowley' model : non-linear superposition of ballooning modes
- → Target power loading mitigated by divertor detachment and toroidally asymmetric divertor biasing

τ_{ELM} versus $\tau_{/\!/}$

• MAST data broadly in line with conventional devices

 $\tau_{\rm ELM} \propto {\tau_{//}}^2 ~\rm JET+AUG$

 $\propto \tau_{//}^{1.3}$ All

 MAST only data shows weaker trend and more reasonable τ_{ELM} offset at τ_{//}=0 (ELM MHD time)

Losses don't support v_{ped}^* scaling

Loarte, 9th EFPW, 2002
- MAST data added

• Pedestal collisionality always high: $< v_{ped}^* > \sim 2.1 \pm 1.3$

even for P_{NBI} up to 2.5MW (steep edge density gradient)

- TS profiles before and after ELM show <T>∆n >> <n>∆T ⇒
 convective losses
- Modest $\frac{\Delta W_{ELM}}{W} < 4\%$ and $\frac{\Delta W_{ELM} f_{ELM}}{P_{heat}} < 5\%$
- ELM energy losses show no correlation to v^{*}_{ped} result of convective-only losses?