

M.G. Bell for the NSTX Research Team

ST Workshop, Nov 18 -21, 2002

Experimental Capabilities Were Improved for 2002 Campaign

<u>Capabilities</u>	
(this year)	
PFC bakeout	350°C
Gas fueling	HFS
Aspect ratio	1.27
Elongation	2.5
Triangularity	0.8
Plasma Current	1.5MA
Toroidal Field	0.6T
NBI (100kV)	7 MW
HHFW (30MHz)	6 MW
- full antenna phase control	
Pulse Length	1s
Reduced PF error field	

ST Workshop / 0211 / MGB

Several Factors Contributed to Sustained Higher β Operation

- Reduction of static error field
 - Reduced incidence of locked modes at low β
 - Reduced rotation damping
- Maintaining $q_{min} > 1$ for longer
 - Previous high- β plasmas collapsed when $q_{min} \leq 1$
 - Higher initial T_e & purity increased conductivity
- H-mode broadened profiles

Reshaping & Realignment of Outer PF Coil Reduced Error Field & Mode Locking

High-Field-Side Gas Injection Improved Both Reproducibility and Longevity of H-mode

- HFS injector gives large initial flow then continuing lower flow
 - contributes to density rise
- LFS fueling with rate similar to HFS produces
 - -Delayed transition
 - -Shorter H phase
- Can also get H-mode by loading walls with D₂ gas
- Confinement similar in all cases

6

Achieved Good Progress Towards NSTX Goal in Normalized- $\beta \beta_N$

• Well into wall-stabilized regime

S. Sabbagh, F. Paoletti

Analysis Shows Wall Stabilization Effective with Sufficient Rotation

Damping of Toroidal Rotation Decreases with Increasing q_{min}

- Rotation decays across profile in case of RWM
- Consistent with theory of global rotation damping

T_e Profiles Reveal Kink-like Displacement During RWM

ST Workshop / 0211 / MGB

S. Sabbagh, B. LeBlanc

Created Diamagnetic Plasma With $\beta_N/I_i = 10$

•
$$I_{\text{non-ind}}/I_{\text{p}} = 0.6$$
 • $I_{\text{bootstrap}}/I_{\text{p}} = 0.42$ (at 0.5s)
J. Menard, S. Sabbagh

12

Global Confinement with NBI Exceeds Standard Tokamak Scalings

- Confinement times from EFIT near peak W_{tot}
 - include NB injected and Ohmic power

S. Kaye 13

Weak Dependence on I_p Observed in Transient Plasmas With Rising W_{tot}

P_{NB} Scans Reveal Complex B_T Dependence

15

Recalibrated Profile Data Available for Kinetic Analysis

- Spectral recalibration of Thomson scattering \Rightarrow higher T_e
 - -Now agrees with reanalyzed x-ray line ratio data
- Spatial recalibration resulted in slightly broader profile
 - -Line-integral density from MPTS agrees with interferometer
- In-situ calibration of CHERS instrumental width \Rightarrow slightly lower T_i

Analysis of Power Balance Confirms Low Ion Transport & Shows Unusual Features

Evolution of X-ray Profiles After Neon Injection Yields Trends in Particle Transport

- Filtered USXR arrays distinguish partially and fully stripped Ne
- Time-dependent analysis with MIST code allows fit for D_{Ne}
 - Solution may not be unique but trends are evident

Reduced edge diffusivity since error field reduced

 I_p , B_T scan at const. q_{cyl} shows clear trend in particle diffusivity

Correlation Reflectometer Reveals Complementary Change in Fluctuations

Correlation length scales

with gyroradius $\rho_s \propto B^{-1}$

- Two-channel swept-frequency reflectometer measures correlation decay length of density fluctuations
- Measures few cm inside the LCFS: 0.90 < r/a < 0.98

Data for I_p, B_T scan at const. q_{cvl}

Broad Scrape-off Measured with Fast Reciprocating Probe

- Probe plunges in 100ms up to 4cm inside LCFS (EFIT)
- Measure T_e , n_e , V_f profiles and fluctuations to 1MHz

• Scrape-off appears to steepen in H-mode phases

Technical Aspects of HHFW Performance

- Full phase feedback system worked very well
 - Phases set to arbitrary waveforms between shots
 - Needed to launch directed waves for current drive
- Power limited to < 3MW throughout run
 - During recent opening, found evidence of arcing in all feedthroughs
 - Modified center conductors to reduce electrical stress

HHFW Heating Not Yet as Effective as NBI

 Compare measured plasma energy increase with ITER scaling for plasma conditions

 $I_p=0.5MA, B_T=0.45T, H=1$

- Current-Drive antenna phasings ⇒ k_{||} ≈ ±7m⁻¹;
 - optimum CD $T_e(0) \sim 1.2 \text{keV}$
- Heating phasing $\Rightarrow \mathbf{k}_{\parallel} \approx 14 \text{m}^{-1}$
- Heating quite variable
- Power limited by antenna standoff

CHI Hardware Modified to Address Technical Problems in 2002 Run

- Improved absorber with long ceramic insulator
 - Similar to successful HIT-II design
- Absorber field control PF coils being installed
 - Design and construction of fast chopper power supplies at University of Washington
- Redesigned snubber circuits to suppress voltage excursions in external circuit
- Improving noise immunity of magnetic diagnostics
- Working on plasma control system to be able to implement CHI control

Achieved Good Progress in 2002

- New facility and diagnostic capabilities added
 - Routine H-mode operation
 - Upgraded profile measurements
- Broadened operating space and increased pulse length
- Significantly increased β and studied associated MHD
 - Detailed studies of β -limiting MHD and fast-particle modes
- Global confinement continues to show interesting trends
 - Ion confinement is good but power balance presents some puzzles
- Beginning studies of edge and scrape-off
- Developing HHFW capabilities for current drive
- Addressing some technical issues for studies of CHI