

Stabilizing impact of β' on microturbulence

Clarisse Bourdelle[#], W. Dorland^{*}, X. Garbet[#], G.W. Hammett, E.J. Synakowski *[#]CEA Cadarache, France ^{*}University of Maryland Princeton Plasma Physics Laboratory*

> 8th International ST Workshop, Princeton, 11/20/02

Outline

 $\beta' = d\beta/d\rho$, with $\rho \sim r/a$

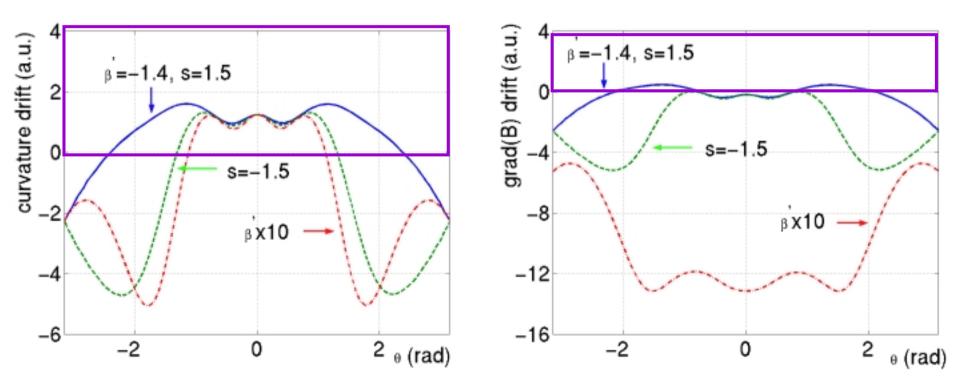
- Presentation of the gyrokinetic code used
- Theoretical explanation of the stabilizing β ' impact
- Relevance to high β NSTX plasmas

Tool for microstability analysis

- linear gyrokinetic electromagnetic code
 - Vlasov equation to link δf to $\delta \phi$, $\delta B_{//}$, δB_{\perp}
 - Maxwell equations to constrain $\delta f_{VS.} \delta \phi, \delta B_{/}, \delta B_{\perp}$

From a given $k_{\theta}\rho_i$ and a given set of n, T, q, ∇ n, ∇ T, s gives ω of unstable modes with γ =Im(ω)

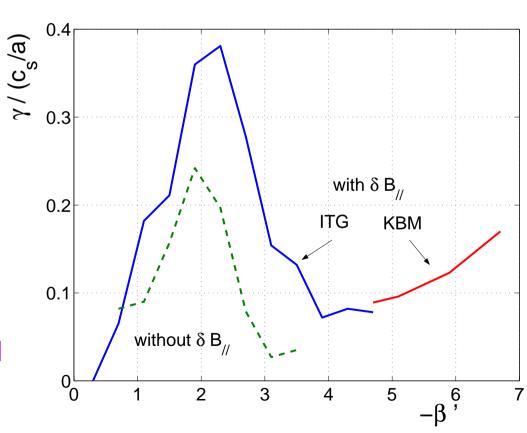
Code used here: GS2 provided by W. Dorland M. Kotschenreuther, et al, Comp. Phys. Com. **88** (95)



Theoretical reason for β ' stabilization

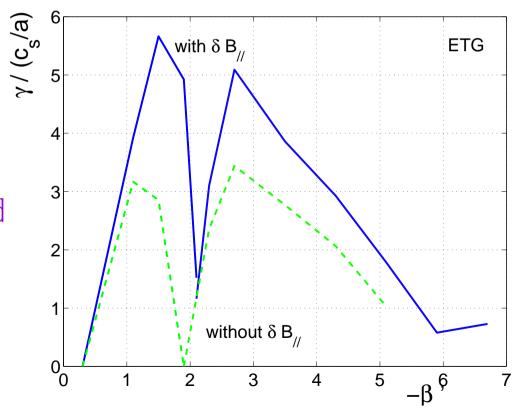
- In a similar way of low and negative magnetic shear, high $|\beta'|$ leads to lower ∇B and curvature drift, therefore lower interchange instability
- In a 's- α ' analytic equilibrium where $\alpha = -q^2 R\beta$ ' $\omega_{\nabla B} = \omega_K \propto \cos\theta + (s\theta - \alpha \sin\theta)\sin\theta$
- In a general equilibrium at high β , $\omega_{K} = \omega_{\nabla B} + \mathbf{b} \mathbf{x} \nabla \beta$ therefore stabilizing $|\beta'|$ impact expected to be enhanced, but $\delta B_{//}$ effect cancels this impact

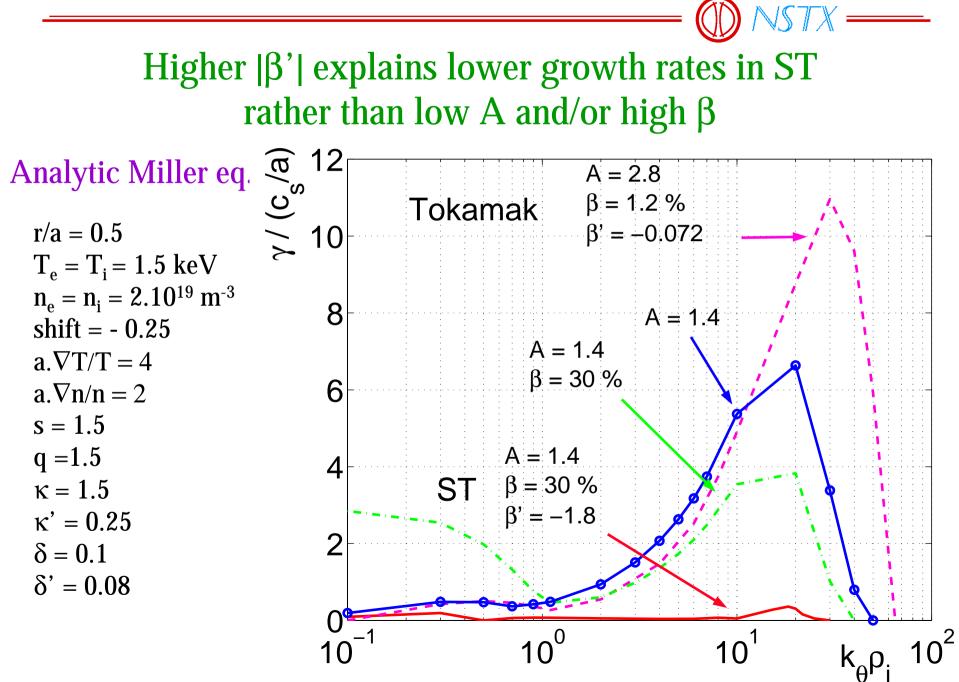
Similar stabilizing impact of β ' and s on curvature and ∇B drifts


 Higher |β'|, as low or negative s = lower curvature and ∇B drifts = lower interchange instability

Drifts from computed magnetic equilibrium

ITG stabilized by high $|\beta'|$ despite higher $|\nabla P / P|$


- β ' scan at fixed β and η , $\beta = 20\%$, $\eta_i = 3$
- adiabatic electrons
- $k_{\theta}\rho_i \sim 0.4$ for ITG
- $k_{\theta}\rho_i \sim 0.15$ for KBM
- Neglecting δB_{//} effects:
 underestimation of γ
 - overestimation of stabilizing |β'| impact


computed equilibrium NSTX #106382 at 0.21 s and r/a=0.4, s=1.3, real $\beta' = -1.1$

TEM and ETG stabilized by high $|\beta'|$ despite higher $|\nabla P / P|$

- β ' scan at fixed β and η , $\beta = 20\%$, $\eta_e = 3$
- adiabatic ions
- $k_{\theta}\rho_e \sim 0.3$ for TEM
- $k_{\theta}\rho_{e} \sim 0.6$ for ETG
- For correct high β ion and electron modes computation cannot neglect δB_{//}

computed equilibrium NSTX #106382 at 0.21 s and r/a=0.4, s=1.3, real β' = -1.1

$\bigcirc NSTX -----$

Conclusions

- High $|\beta'|$ stabilize interchange instability
- Need to include $\delta B_{//}$ effects in high β plasma to avoid underestimation of growth rates
- Possibility of entering positive feedback loop in high β ST plasmas, either by maintaining more easily $\gamma < \gamma_E$ or thanks to β ' alone when strong enough to compensate destabilizing higher $|\nabla P / P|$ to be explored experimentally. Should be easier with s low or negative and/or with low η , i.e. higher $\nabla n/n$ (pellet injection?)
- β' might be one of the player for ITB formation in standard tokamaks