

H-mode Access and ELMs in NSTX

Charles E. Bush

Oak Ridge National Laboratory

M.G. Bell 2), R.E. Bell 2), J. Boedo 3), W.M. Davis 2), E.D. Fredrickson 2), D.A. Gates 2), D.W. Johnson 2),
R. Kaita 2), S.M. Kaye 2), S. Kubota 4), H.W. Kugel 2), B.P. LeBlanc 2), R. Maingi 1), R.J. Maqueda 5),
D. Mastrovito 2), S. Medley 2), J.E. Menard 2), D. Mueller 2), M. Ono 2), F. Paoletti 6), S.J. Paul 2),
Y-K.M. Peng 1), P.G. Roney 2), A.L. Roquemore 2), S.A. Sabbagh 6), C.H. Skinner 2), V.A. Soukhanovskii 2),
D. Stutman 7), D. Swain, 1) E.J. Synakowski 2), G. Taylor 2), J. Wilgen 1), S.J. Zweben 2) *for the NSTX Team*

1) Oak Ridge National Laboratory
 2) Princeton Plasma Physics Laboratory
 3) University of California, San Diego
 4) University of California at Los Angeles
 5) Los Alamos National Laboratory
 6) Columbia University

7) Johns Hopkins University

8th Annual ST Workshop Princeton, NJ, Nov. 18-21, 2002

NSTX H-modes Similar to Conventional Aspect Ratio Tokamaks, with a few Notable Exceptions

- Now have wide H-mode access space
 - Changes in wall conditioning and fueling
- Long pulse, high- β_T with H-mode
- Power threshold relatively high
 - Possible I_p dependence
- Edge fluctuations
- Wide variety of ELM behavior

NSTX Explores Low Aspect Ratio (R/a≥1.27) Physics Regime

Enabling Capabilities:

- 350° C bake out of graphite tiles
- Regular boronization (~3 weeks)
- Helium Glow between discharges
- Center stack gas injection
- Error field reduction

Parameters	<u>Achieved</u>
Major Radius	0.85m
Minor Radius	0.67m
Plasma Current	1.5MA
Toroidal Field	0.6T
Heating and Current Drive	;
NBI (100keV)	7 MW
RF (30MHz)	6 MW

C.Bush, APS2002

- β_T up to 35% and β_p up to 1.4
- H-mode phase duration > 500 ms (with NBI)
- Lower Single Null (LSN) & Double Null (DN) Divertor Configuration.

Outline

- Now have wide H-mode access space
- \Rightarrow Long pulse, high β_T with H-mode
- Power threshold relatively high
 - Possible I_p dependence
- Edge fluctuations
- Wide variety of ELM behavior

Summary

High Performance Sustained During Long-Pulse H-modes

orn)

- \bullet $n_{\rm e}$ profile hollow after transition and fills in 300-500 ms
- T_e profile flattens initially and peaks later in time

LeBlanc

Confinement Enhanced Over Values Given by Conventional Aspect Ratio Scalings

Confinement Gain in Steady-state After the H-mode Transition is Often Modest

• Gain in going from high performance L-mode to H-mode is modest

om

Outline

- Now have wide H-mode access space
- Long pulse, high β_T with H-mode
- ⇒ Power threshold relatively high
 - Possible I_p dependence
- Edge fluctuations
- Wide variety of ELM behavior

Summary

L-H Power Threshold Found by Reducing NBI Power Until Very Short H-phase or Dithers Occur

 NBI power reduced with beam voltage; even lower power using beam modulation

- Dithers observed with $P_{NBI} \ge P_{th}$
- ELM-free discharges when P_{NBI} >> P_{th}

Power Threshold Experiments Show Possible I_p Dependence

• $P_{th,1} \sim n_e^{0.61} B_T^{0.78} a^{0.89} R^{0.94}$ (Snipes et al., IAEA 2002)

om

Comparisons with L/H Transition Theories Drift-Ballooning Rogers and Drake, L-mode H-mode PRL, 1998 10 $\alpha_{\rm mhd}$ = -Rq²d β /dr omhd $\alpha_{dia} = (\rho_s \Omega_e / v_{ei})^{1/2} / (L_n R)^{1/4} q$ 1 0.1 0.1 αdia - Qualitative agreement with theory -L and H-mode groups distinct Kaye -Decreased L_n , increased β in H-mode

- Similar results for Peeling and Drift-Alfven mode theories

Outline

- Wide H-mode access space
- Long pulse high β_T with H-mode
- Power threshold
 - Possible Ip dependence
- \Rightarrow Edge fluctuations
- Wide variety of ELM behavior
- Summary

Scrape-off Layer Turbulence is Reduced **During H-mode**

In SOL where $T_e \le 20 \text{ eV}$, $n_e < 3 \times 10^{12} \text{ cm}^{-3}$:

- Density fluctuations reduced during H-mode
- Frequency spectrum broader in L-mode

Fluctuation Amplitude Reduced in Steep Density Gradient Region

Outline

- Now have wide H-mode access space
- Long pulse, high β_T with H-mode
- Power threshold relatively high
 - Possible I_p dependence
- Edge fluctuations
- ⇒ Wide variety of ELM behavior
- Summary

Dependence of L-H Transition and ELM Behavior on Heating Power

Large ELMs penetrate deep into the plasma

Ideal High-n Ballooning Unstable before giant ELM

C.Bush, APS2002

NSTX H-modes Similar to Conventional Aspect Ratio Tokamaks, with Some Notable Exceptions

- H-modes allow reproducible high performance on NSTX
- Confinement is enhanced relative to conventional aspect ratio tokamak scalings
- H-mode power threshold higher than ITER scalings

- Experimental data shows an I_p dependence

- Fluctuation levels lower in H-mode than in L-mode
- ELM characteristics depend on shape and fueling

END

C.Bush, APS2002