Millimeter-Wave Reflectometry on NSTX

S. Kubota, M. Gilmore, W. A. Peebles, X. V. Nguyen

Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095

A. Ejiri

Graduate School of Frontier Sciences, University of Tokyo, Tokyo 113-0033, Japan

A. L. Roquemore

Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

MM-Wave Reflectometery on NSTX: Goals and Contents

- Measurements of density profile and fluctuation quantities in region overlapping plasma edge and core.
 - Sensitive, local measurements with high bandwidth and excellent temporal coverage.
 - Density profiles, turbulent correlation length, fluctuation levels, magnetic field strength, Alfven eigenmodes, etc.
 - Magnetic pitch angle (spring 2003), RF waves (proposed), etc.
- FM-CW (frequency-modulated continuous-wave) profile reflectometry.
 - Fast profile measurements for ELMy H-mode discharges.
- Fluctuation measurements.
 - Fixed frequency quadrature systems, 3 simultaneous channels.
 - Turbulence at L-H transition and during H-mode, ELMs, CAEs.
- Correlation reflectometry.
 - Turbulence radial correlation lengths.
 - Magnetic field strength measurements (dual mode operation).

Location of Reflectometer Diagnostics on Bay J

Diagnostic System for Profile Analysis

- 12-50 GHz coverage (1.8x10¹² to 3.1x10¹³ cm⁻³).
- Maximum repetition rate of 100 μs/sweep (818 total profiles).
- Using spline fit to Thomson edge profile below $n_e = 9x10^{11} \text{ cm}^{-3}$.
- Typical discrepancy of less than 2 cm between reflectometry and Thomson scattering profiles. Edge modeling and systematic uncertainties.

Fixed-Frequency System

• 12-18, 28.2, 50 GHz. Density coverage of 1.8-4.0x10¹², 9.9x10¹², and $3.1x10^{13}$ cm⁻³.

- Dedicated 50 GHz system.
- Three channel simultaneous measurements at 10 MHz.

Dual Mode Correlation Reflectometer Circuit Diagram

- 20-30 GHz homodyne system
- f1 fixed, f2 slowly swept

 f1, f2 combined in circular w/g via ortho mode transducer (OMT)

 Circuit implemented mainly with high frequency coaxial cable/devices. Transition to w/g at OMTs.

• Cutoff densities $n_e \approx 0.5$ \rightarrow 1.0 $_{\times}$ 10¹³ cm⁻³ probed

 Cutoff positions in the range R/a _ 0.85 - 0.95

20-30 GHz OMT

YIG

YIG

8th Annual ST Workshop, November 18-21, 2002, Princeton, NJ

NB-Heated Discharge: L- to H-Mode Transition (Shot 108470)

8th Annual ST Workshop, November 18-21, 2002, Princeton, NJ

NB-Heated Discharge: H-Mode, Giant ELMs (Shot 108487)

Giant ELMs/Density and Magnetic Fluctuations

 $\Delta R=R-R_{mean}$, R=density contour.

Increased density oscillations and slow magnetic signal correlated with density profile change. Both precede $D\alpha$ burst.

L-H Transition/Moderate ELMs/Magnetic Signature

 ΔR oscillations are larger and more prevalent. ELM precursor oscillations unclear.

Very fast density changes (no $D\alpha$ signature) associated with high frequency (100-150 kHz) magnetic oscillations.

Turbulence Suppression/Fluctuations at L-H Transition

Fluctuation Measurements: Compressional Alfven Eigenmodes

⁸th Annual ST Workshop, November 18-21, 2002, Princeton, NJ

Results from O- and X-Mode Swept Configurations

Radial Correlation Length Measurements

8th Annual ST Workshop, November 18-21, 2002, Princeton, NJ

Status of MM-Wave Reflectometry Systems

- Fast FMCW, three channel quadrature, and radial correlation reflectometers available.
- Plan to have between-shot analysis for profile data, however this will depend on processor availability. Also, above systems will not be available simultaneously.
- Work is underway to decrease sweep times for and increase the frequency band for FMCW and correlation reflectometers. LabVIEW control of diagnostic and data acquisition.
- Measurement location is dependent on density profile shape. Flat profiles with steep edge or ears will mean that measurements will be mainly in edge.

Planned and Proposed Future Work

- Profile measurements up to 5x10¹³ cm⁻³ via higher frequency opera tion (up to 65 GHz)? Higher sweep rate (up to 100 kHz).
- Improve accuracy of profile measurements. Below 1.8x10¹² cm⁻³, use of in-vessel 4-18 GHz quad-ridged EBW antenna.
- Dedicated hardware for fixed-frequency measurements. Further analysis of CAEs, H-mode and ELM precursors, turbulence, etc. Simultaneous profile and fluctuation measurements.
- Radial correlation reflectometry for correlation length and |B| measurements. Broader profile coverage, faster time response.
- Measurement of magnetic field pitch angle. Planned for spring 2003.
- Measurement of RF waves (proposed). Look at directionality due to antenna phasing, radial wave number.