Ideal MHD Stability Diagram of Simply Connected Magnetic Configurations with Unitary Beta

Paolo Micozzi, Franco Alladio, Alessandro Mancuso, François Rogier¹

CR-ENEA, CP 65, 00044 Frascati (Rome), Italy

¹ONERA, Toulouse, France

Associazione Euratom-ENEA sulla Fusione 目り目入

Compact Tori are attractive candidates for magnetic fusion propulsion, but...

- Spheromaks are limited by ideal MHD stability to $\beta \sim 0.15$
- FRC's are $\beta \sim 1$, but theoretical understanding of their macroscopic stability remains elusive

OUTLINE

- Equilibrium characteristics of a simply connected magnetic confinement scheme: unrelaxed CKF configurations
- Ideal MHD stability boundaries of unrelaxed CKF configurations
- Preliminary experimental approach to unrelaxed CKF configurations:
 PROTO-SPHERA

Associazione Euratom-ENEA sulla Fusione

A simply connected magnetic confinement scheme is obtained superposing two axisymmetric homogeneous force-free fields, both having $\vec{\nabla} \wedge \vec{B} = \mu \vec{B}$, with the same relaxation parameter μ :

the Chandrasekar-Kendall spherical solution and the Furth square-toroids $\psi(r,\vartheta) = \psi_{\mu\lambda}^{c\kappa} + \gamma \cdot \psi_{\mu\lambda}^{F}$ For $\gamma \ge 0.402...$ in a simply connected region the toroidal current density j_{φ} has the same sign: Chandrasekhar-Kendall-Furth force-free field (CKF)

Associazione Euratom-ENEA sulla Fusione 目の目入

However CKF force-free fields ($\nabla p=0$) are unable to confine plasmas of fusion interest Unrelaxed ($\nabla \mu \neq 0$, $\nabla p \neq 0$) MHD free boundary equilibria, similar to CKF force-free fields

Relaxed & unrelaxed CKF configurations contain:

- a magnetic separatrix with ordinary X-points $(B\neq 0)$
- a main spherical torus (ST), 2 secondary tori (SC) and a surrounding discharge (P)
- two degenerate X-points (B=0) are present (top/bottom) on the symmetry axis

Associazione Euratom-ENEA sulla Fusione 目入目入

 $\beta = 1$ = $I_{ST}/I_e = 3$ Effect of μ jump

Assumption of the equilibrium scansion:

- same edge shape
- same total toroidal current I_{CKF}

If current flow is sustained in surrounding discharge, magnetic helicity is injected into the ST (X-points), flowing down $\vec{\nabla} < \mu >$: $\vec{\nabla}$ p concentrated in same region

Associazione Euratom-ENEA sulla Fusione 물 물

Scan at fixed shape of the plasma edge (& fixed I_{CKF})

Unrelaxed CKF equilibria in terms of $(I_{ST}/I_e, q_0^{ST})$

Characteristics of the Ideal MHD Stability Code

• Plasma on the symmetry axis

- R=0: $\lim_{R\to 0} \vec{\nabla} \psi_T = 0 \implies \xi(\psi_T^{\max}, \theta, \phi) = 0$ (otherwise potential energy divergences)
- $\begin{array}{rl} R \neq 0 & : & \vec{\nabla} \psi_T \neq 0 & \Rightarrow & but \ if \ \xi(\psi_T^{max}, \theta, \phi) = 0 \\ & (unphysical \ fixed-boundary) \end{array}$

Solution \Rightarrow New variables: $\xi = \vec{\xi} \cdot \vec{\nabla} \psi_T / R^2, \ \eta = \ \vec{\xi} \cdot (\vec{\nabla} \theta - \vec{\nabla} \phi / q) / B$ • 2D finite element method for the vacuum energy

Can account for conducting shells of any shape

Boozer coordinates joined at interfaces

Global modes: ideal MHD conditions at separatrix

Normal displacement: $\xi = \vec{\xi} \cdot \vec{\nabla} \psi_T / R^2$

continuous

Binormal & Parallel:

 $\eta = \vec{\xi} \cdot (\vec{\nabla} \theta - \vec{\nabla} \phi/q)/B,$ $v = -\sqrt{g}\vec{\xi} \cdot \vec{\nabla}\phi$ jump

Inside Tori $\xi = \Sigma_{\ell} \xi_{\ell} (\psi_{T}) \sin(m_{\ell}\theta - n\phi),$ $\eta = \Sigma_{\ell} \eta_{\ell}(\psi_{\rm T}) \cos(m_{\ell}\theta - n\phi),$ $v = \Sigma_{\ell} v_{\ell}(\psi_{T}) \cos(m_{\ell}\theta - n\phi)$

Surrounding coupled mode: $\xi = \Sigma_{\ell} \xi_{\ell}(\psi_{T}) \sin(m_{\ell} 3\theta - n\phi),$ $\eta = \Sigma_{\ell} \eta_{\ell}(\psi_{\rm T}) \cos(m_{\ell} 3\theta - n\phi),$ $v = \Sigma_{\ell} v_{\ell}(\psi_{T}) \cos(m_{\ell} 3\theta - n\phi)$

Associazione Euratom-ENEA sulla Fusione

• MHD modes limited to the surrounding plasma

Modes that have zero radial displacement at the magnetic separatrix: $\xi(\psi_T^X, \theta, \phi)=0$ This condition decouples them from tori

Are anyhow free-boundary modes: $\xi(\psi_T^{max}, \theta, \phi) \neq 0$

Inside Surronding Discharge: $\xi = \sum_{\ell} \xi_{\ell}(\psi_{T}) \sin(m_{\ell}\theta - n\phi),$ $\eta = \sum_{\ell} \eta_{\ell}(\psi_{T}) \cos(m_{\ell}\theta - n\phi),$ $\nu = \sum_{\ell} \nu_{\ell}(\psi_{T}) \cos(m_{\ell}\theta - n\phi)$ • Boozer coordinates in surrounding discharge

Ideal MHD Stability Results (wall at ∞)

Stability even at $\beta=1$ in absence of any conducting shell around the plasma for toroidal mode number n=1, 2, 3

Associazione Euratom-ENEA sulla Fusione

PROTO-SPHERA can be viewed as an unrelaxed **CKF** configuration where:

- force-free screw pinch, fed by electrodes, replaces in part the surrounding discharge
- "divertor" poloidal field coils replace the secondary tori

With limited modifications of the load assembly and increasing the number of the PF coil power supplies, PROTO-SPHERA could try the inductive formation of an unrelaxed CKF configuration, after the destabilization of a screw pinch produced by electrodes

Ideal MHD comparison between Unrelaxed CKF & PROTO-SPHERA

Unrelaxed CKF

- With $\beta_{ST}=1$ only flat pressure profiles $(q_0^{ST} \sim 1)$ are allowed if $I_{ST}/I_e > 4$; if $1.5 < I_{ST}/I_e < 4$ (i.e. $2.7 < q_{95}^{ST} < 4$) even peaked pressure profiles (high q_0^{ST}) show stability
- At lower β_{ST} the region showing stability with peaked pressure profiles is extended to $1.2 < I_{ST}/I_e < 5.5$ (i.e. $2 < q_{95}^{ST} < 5$) and the stability region with flat pressure profiles is enlarged

PROTO-SPHERA [machine parameters: $I_{ST}^{max}/I_e=4$ ($I_{ST}^{max}=240$ kA, $I_e=60$ kA), $q_{95}^{ST}\sim2.8$]

- If $I_{ST}/I_e \le 1$ stability for ideal modes with n=1,2,3 has been found up to $\beta_{ST}=25\%$; in the range $2 \le I_{ST}/I_e \le 4$ the stability limit decreases to $\beta_{ST}=14\div 18\%$
- Instabilities on the ST dominate: the Screw Pinch becames unstable only if $I_{ST}/I_e \ge 4$

Surrounding Discharge plays a crucial role in order to increase the ideal stability of the ST in the unrelaxed CKF configurations