Current Drive Mixing Experiments on the Helicity Injected Torus (HIT-II)

A. J. Redd, T. R. Jarboe, B. A. Nelson, R. Raman, P. Gu, W. T. Hamp, V. A. Izzo, R. G. O'Neill, P. E. Sieck and R. J. Smith

Aerospace & Energetics Research University of Washington Seattle, Washington USA

Presented at the 2002 Joint ST Workshop Princeton Plasma Physics Laboratory November 18 – 21, 2002

Summary

- HIT-II is a modest ST (major radius 0.3 m, minor radius 0.2 m, on-axis toroidal field up to 0.5 Tesla), but has demonstrated toroidal plasma currents of up to 250 kA, using a combination of CHI and Ohmic.
- Recent HIT-II experiments have demonstrated robust noninductive startup using CHI, with handoff to Ohmic current drive.
 - Highest I_p measured on HIT-II: 250 kA
 - Significant transformer Volt-second savings
 - EFIT indicates high plasma pressures
 - -Sawtooth observations correlate with EFIT
- The Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) is under construction.

The HIT-II Spherical Torus

The HIT-II Spherical Torus

• HIT-II Engineering Parameters:

Major Radius R	0.3m
Minor Radius a	0.2m
Aspect Ratio A	1.5
Elongation κ	1.75
Ohmic Flux Available	60 mWb

• HIT-II Achieved Plasma Parameters:

Parameter	Ohmic	CHI	CHI+OH
Pulse Length	$60 \mathrm{ms}$	25 ms	40 ms
Peak Current	200 kA	240 kA	250 kA
Density \bar{n}_e	$\leq 5 \times 10^{19} \text{ m}^{-3}$	$1-6 \times 10^{19} \text{ m}^{-3}$	$\leq 5 \times 10^{19} \text{ m}^{-3}$

- HIT diagnostics include:
 - Multi-point Thomson Scattering
 - Scannable two-chord FIR interferometer
 - Scannable single-chord 16-channel Ion Doppler Spectrometer
 - Pair of vacuum-UV (VUV) spectrometers (OVI/OV ratio)
 - Single-chord average-Z $_{\rm eff}$ measurement
 - H- α visible light detectors
 - Surface magnetic triple probes
 - Bolometer (total radiation emission)
 - Internal magnetic and Langmuir probes
 - SPRED
 - Multi-chord soft X-ray (SXR) camera

Overview of HIT Midplane Diagnostics

CHI Startup of Ohmic HIT-II Plasmas

- Recent HIT-II experiments have used a CHI pulse to ionize and form a seed ST for Ohmic current drive:
 - 1. Discharge begins as typical CHI plasma (high voltage, low capacitance Formation Bank)
 - 2. Injector flux rapidly brought to zero(8 mWb of flux, ramped down in a few ms)
 - 3. As injector flux vanishes, apply Ohmic drive
- Discharge features:
 - CHI+Ohmic plasmas have I_p up to 250 kA, higher than any previous HIT-II Ohmic plasma
 - Significant transformer Volt-second savings over Ohmic-only operation
 - Interferometry scans show that:
 - * CHI-phase plasma is thin current sheet near wall
 - * Ohmic-phase plasma fills confinement region and has a peaked density profile

HIT-II #24553 and #24552 - CHI+Ohmic

EFIT Reconstruction of HIT-II Discharges

- EFIT reconstructions of HIT-II discharges are undergoing continual improvement. Presently, HIT-II EFITs utilize:
 - Toroidal plasma current, diamagnetic flux and current on the driven flux (I_{inj})
 - -24 poloidal flux loops
 - -18 Rogowski segments measuring poloidal field
 - 19 poloidal magnetic surface probes
 - Realistic estimates for measurement errors
- The fit functions are of the following form:

$$FF'_1(y) = \gamma_{10}$$
 (below the X-point)
 $FF'_2(y) = \gamma_{20} + \gamma_{21}y$ (above the X-point)
 $p'(y) = \alpha_0(1-y)$

where

$$y \equiv \frac{\psi - \psi_{axis}}{\psi_{abs} - \psi_{axis}}$$

and ψ_{abs} is the poloidal flux in the absorber region

- Qualitatively, reconstructions fit measurements acceptably. Quantitatively, overall error $\leq 10^{-4}$, but $\chi^2 \ll 64$.
- In the near future, HIT-II EFITs will also utilize:
 - -24 F-coil currents (code is being verified)
 - -12 surface $I_{inj}(\psi)$ -probes
 - Multi-point Thomson scattering data
 - Internal magnetic probing data

HIT-II #24553 CHI+Ohmic Results from EFIT Analysis

Discharge #24553 has best HIT-II plasma performance:

- \bullet Peak toroidal plasma current of 250 kA
- Current decay time of up to 20 ms
- Peak closed poloidal flux of 40 mWb, using 52 mWb Ohmic flux swing
- $q_0 < 1$ period correlates with observed sawteeth
- $\beta_p \approx 1.5$ and on-axis $\beta_T \approx 18\%$

Poloidal Flux Contours for HIT-II #24553 (CHI+OH) at t=17.5 ms from EFIT reconstruction 0.4 0.2 0.0 Z (m) -0.2 -0.4-0.6 0.30 0.40 0.50 0.00 0.10 0.20 R (m)

HIT-II CHI+Ohmic #24553 - Data vs EFIT (tavg=50us)

HIT-II CHI+Ohmic #24553 - Data vs EFIT (tavg=50us)

PPPL, NJ, Nov 18-21, 2002

The Proto-SI Device: Design Cross-section

PPPL, NJ, Nov 18-21, 2002

The Proto-SI Device: Under Construction

