Equilibrium and Stability Characterization of A < 1.3 Plasmas in the PEGASUS Toroidal Experiment

Aaron Sontag for the PEGASUS Team

University of Wisconsin-Madison

STW 2002 November 20, 2002

Work supported by U.S. DoE Grant No. DE-FG02-96ER54375

- Test limits of beta and safety factor as $A \rightarrow 1$
- Access high toroidal beta and high toroidal utilization factor (I_p/I_{tf})
- A "soft limit" occurs at $I_p/I_{tf} \approx 1$
 - *due to MHD activity and some reduction in V-s*
- Beginning to explore the edge kink stability boundary
 - $q_{95}=5$ is found unstable
- Upgrades will allow further challenges to stability limits
 - tools for increased plasma control

Achieved Parameters: • A = 1.12-1.3

- R = 0.2-0.45 m
- I_p = 0.16 MA
- RB_t ≤ 0.03 T-m

- $\Delta t_{pulse} = 0.01 0.03 s$
- $< n_e > = 1-5 \times 10^{19} \text{m}^{-3}$
- $\beta_t \le 20\%$ ($\beta_t \equiv 2\mu_0 /B_{t0,vac}^2$)

Motivation:

- robustness
- easy incorporation of new diagnostics
- portability

Description:

- full solution of Grad-Shafranov equation at each iteration G-S solver uses multi-grid Gauss-Seidel PDE solver
- minimize χ^2 of fit to measurements
 - χ^2 minimization via Levenberg-Marquardt method
- has been validated against TokaMac

Profile parameterization:
 CC² as 2 term polymorphile

- $F(x) = F_0 + (F_1 + F_2 \psi_N + F_3 \psi_N^2 + \dots + F_n \psi_N^{n-1}) \psi_N^n (F_1 + F_2 + \dots + F_n)$
- GG' as 3 term polynomial
- p' as 2 term polynomial

$$\psi_{N} = \frac{\psi - \psi_{0}}{\psi_{\lim} - \psi_{0}}$$

Drawbacks:

- computationally intensive \rightarrow slow
- average fit takes approximately 1.5 minutes with 1.3 GHz Athlon

A full set of magnetics diagnostics provides equilibrium and stability data

Induced wall currents calculated by numerically integrating resulting set of differential circuit equations

- coupled current filaments described by matrix equation

$$\overline{\overline{M}} \cdot \frac{d\overline{I}}{dt} + \overline{\overline{R}} \cdot \overline{I} = \overline{V}$$

- inductance matrix (*M*) determined by coil set self-inductances and mutual-inductances

inductance of individual filament (wall)

$$L_i = \mu_0 R \left[\ln \left(\frac{8\sqrt{\pi}R}{\sqrt{A}} \right) - \frac{7}{4} \right]$$

self-inductance of coil set i

$$L_i I_i = \sum_{k=1}^{N_i} \sum_{l=1}^{N_i} \Phi_i^{k,l}$$

mutual inductance of coil set i with coil set j

$$M_{ij}I_{j} = \sum_{k=1}^{N_{i}} \sum_{l=1}^{N_{j}} \Phi_{ij}^{k,l}$$

	Parame	ter Rel. Uncertain	ty
 Uncertainty estimation technique: 	۱ _р	± 2%	
- single time-slice of discharge reconstructed	R_0	± 4%	
100 times	ℓ_{i}	± 9%	
- Gaussian noise added to measurement data	β _t	± 15%	
Gaussian width from diagnostic uncertaint	_y β _p	± 15%	
starting $\chi^2 \sim 8 \times final \chi^2$	q ₉₅	± 6%	
- σ of fit parameter distributions gives uncertain	ty q ₀	± 20%	
	ଞ୍ଚ 25 -	 8 25 −	
 Variety of discharges analyzed 			
- wide range of fit parameters covered:	5 of 5		
75 kA < I _p < 150 kA	*		1 /
$8\% < \beta_t < 18\%$	0.40 li		1 4 2/3
		13, 17	

- $8\% < p_t < 18\%$
 - $0.2 < \ell_i < 0.4$ $0.23 \text{ m} < \text{R}_0 < 0.33 \text{ m}$
- $\frac{\sigma_{\ell i}}{\ell_i} = 9 \%$ - no significant variation in relative uncertainty ⇒uncertainty determined by diagnostic uncertainties

β_t (%)

 $\frac{\sigma_{\beta t}}{\beta_t}$ = 15 %

Pegasus Toroidal Experiment University of Wisconsin-Madison

1.0

1.0

1.0

- High- β_t (Ohmic): β_t ~ 20% • High- β_N (Ohmic): β_N ~ 5 • High-I_N (Ohmic): I_N ~ 6.5 • High I_p/I_{TF}: $I_p/I_{TF} \sim 1$ • High-к (natural): $\kappa > 2$ • High field windup: high q_a at low TF
- Paramagnetic: $\beta_p = 0.3$ at $\epsilon = 0.83$; F/F_{vac} ~ 1.5 on axis

- $\beta_t \sim 20\%$ and $I_N > 6$ achieved ohmically
- Low field \rightarrow high I_N and β_t

PEGASUS operates in low- ℓ_i , high-density space

Visible light image

Bolometry shows no indications of impurity build-up

SPRED indicates oxygen is dominant impurity species

Ultra-low $A \Rightarrow$ strong poloidal asymmetry to tearing mode

- Large phase shifts observed along centerstack for m/n=2/1
 - 1.5 wavelengths observed across 120° poloidally
 - similar structure observed for 3/2 and higher m/n
- Mode is strongest on the low-field side
 - LFS coils \sim a from edge
 - HFS coils ~ a/10 from edge

2/1 Poloidal Phase at the Wall

Tangential PHC SXR image

- 2D soft x-ray camera gives q-profile
 - Measures constant-intensity surfaces
 - Used as internal constraint on equilibrium
 - Useful as q-profile diagnostic
- Measured q-profile \Rightarrow zero central shear
 - Typical of low-A
 - Confirms shape predicted by external magnetics

- Maximum $I_p \approx I_{tf}$ in almost all cases
- Limit is not disruptive or abrupt

 I_p saturates or rolls over

Large resistive MHD instabilities degrade plasma as TF \downarrow

- low B_t and fast $dI_p/dt \rightarrow q = low-order m/n early in discharge$
- high resistivity early in plasma evolution
- ultra-low $A \rightarrow$ low central shear
- in the Rutherford regime:

$$\frac{\mathrm{d}w}{\mathrm{d}t} \sim \eta$$
 $w_{\mathrm{sat}} \sim q \left(\frac{\mathrm{d}q}{\mathrm{d}r}\right)^{-1}$

⇒ Result is early rapid growth of tearing modes and large saturated island widths

Reduced available Volt-seconds as TF ↓

- reduction in toroidal field \rightarrow delayed startup
- delayed startup \rightarrow reduction in available volt-seconds
- only partially explains drop in ${\rm I}_{\rm p}$ with reduced ${\rm I}_{\rm tf}$

- Most common mode m/n=2/1
 - other m/n also observed
 - evidence of 2/1-3/2 coupling
- Leads to increased C_E , decreased I_p
 - Less efficient flux consumption in presence of internal MHD
 - Degradation of τ_E
 - Decrease in dI_p/dt and I_p
 - Large radial extent
 ⇒ affects entire plasma

SXR→ large radial extent of mode

Island width estimates give w>10 cm

$$w \approx 4 \sqrt{\frac{\delta B}{B_t} \frac{qR}{n \frac{dq}{dr}}} \sim a$$

- Along I_p~I_{TF} contour: δ B \uparrow as TF \downarrow
- At high TF effect of MHD minimal $-C_E = 0.4$
- At lower TF MHD amplitude increases
 - C_E increases
 - Stored energy decreases

Tearing modes correlated with appearance of low q=m/n in broad low-shear region

- Low-A and low toroidal field ⇒ appearance of q=2 surface early in discharge
- η high early in shot
- Broad low-shear region gives large radial extent of mode
 - 2D SXR imaging shows low central shear

Cylindrical approximation OK for central flux surfaces:

$$q(r) = \frac{2\pi r^2 B_t}{\mu_0 RI(r)} \frac{1 + \kappa^2}{2}$$

• Assuming flat j(r) implies:

$$q_0 \sim \frac{1}{A^2} \frac{I_{TF}}{I_p} \left(\frac{1 + \kappa^2}{2} \right)$$

• For PEGASUS at $I_p \sim I_{TF} \Rightarrow q_0 = 1.5 - 2$

 \Rightarrow Low-order rationals in low-shear region for $I_p = I_{TF}$

- Improved wall conditions & EF control \rightarrow plasmas with reduced MHD activity Increased W, $\rm I_p$
- Increased shear, increased $q_0 \Rightarrow$ delay tearing onset
- MHD amplitude decreases with increasing shear @ mode rational surface
- \Rightarrow Access higher toroidal field utilization via higher q₀, T_e, shear

Large scale tearing modes observed in almost all plasmas

- low B_t and fast $dI_p/dt \rightarrow low q$ early in discharge
- high resistivity early in plasma evolution \rightarrow fast island growth
- ultra-low A \rightarrow large island widths

• MHD activity contributes to $I_p \sim I_{tf}$ soft limit

- large tearing modes dissipate input flux
- mode onset is related to appearance of low-order rational q surfaces onset at lower I_p for lower TF
- MHD amplitude increases as TF decreased
- mitigated by lower η , increased q_0 , increased shear

\cdot At highest I_p ideal external kink is observed ...

- Higher-current plasmas (150 kA class)
 often terminate in abrupt disruptions
- n=1 fluctuations are observed on core Mirnov coils immediately prior to disruption
 - Dominant frequency is order of 10 kHz
 - Mode is observed a few 100 µs before IRE
- These fluctuations are not observed in lower-current shots

- tearing modes suppressed
- free boundary energy \rightarrow 0 as $q_{95} \rightarrow 5$
- disruption immediately follows
- mode grows on a hybrid time scale between τ_A and q(dq/dt)⁻¹

- Roughly as expected for a plasma slowly crossing instability boundary

Goals:

- Manipulate q-profile: suppression of large internal modes
- Lower η during plasma formation: suppression of large internal modes
- Manipulate edge conditions: Expand access to external kink modes
- Access to very high β_t regime for stability analysis

Additional tools being deployed:

- Programmable waveform power systems
 - Increase V-sec, B_t ; position and shape control
- Fast-response B_t(t) system
- Separatrix operation
- Increased HHFW power

Ohmic Upgrade:

- Programmable waveform being implemented
 - will increase V-s capability
 - eliminates overdrive after breakdown

TF Upgrade:

- Allows operation at > 3X present I_{TF}
 hold off q = 2 surface until η is decreased
- Fast ramp-down capability

EF Upgrade:

- · Flexibility added to coil set
 - pre-programmable shape control
 - position control for improved HHFW coupling
 - energize divertor for separatrix operation

- Mission: Study characteristics of plasmas as $A \rightarrow 1$
- Ready access to low-A physics with ohmic heating:
 - $\beta_t = 20\%$, $\beta_N > 4$, $n_e \approx n_{GW}$, low central shear, paramagnetic: F/F_{vac}=1.5
- Resistive MHD activity and some Volt-second reduction result in a "soft limit" of $I_p{\sim}I_{TF}$

- Associated with central $q(\psi) = 1.5-2$

- Beginning to explore the edge kink stability boundary - external kink observed at $q_{95} = 5$
- Upgrades now underway will provide improved plasma control and allow access to high- β_t , high I_p/I_{TF} regime

