

Plasma formation and sustainment without a central solenoid in a Spherical Tokamak

Alan Sykes, Alexei Dnestrovskij¹, Mikhail Gryaznevich, Dave Taylor

EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, UK ¹Kurchatov Institute, Moscow, Russia

This work was jointly funded by the UK Department of Trade & Industry and EURATOM

Plasma formation without central solenoid

examples:

- Merging Compression scheme in MAST
- CHI in NSTX / HIT

Current ramp-up in STs

- Effectiveness of NBI
- Bv contribution
- Results from MAST

The Merging / Compression scheme •used on START and MAST

•can produce an initial ST plasma of 500kA on MAST

Plasma rings form

- merge - take up ST configuration all in 10ms

Merging-Compression produces a relatively hot ST plasma:

Ch. 1:	— 7391	ats	te/12
Ch. 2:	— 7392	ats_	<u>r/12</u>
Ch. 3:	— 7392	ats_	te/12
Ch. 4:	— 7393	ats_	_r/12
Ch. 5:	7393	ats_	_te/12

Plasma current scales with I(P3) (induction coil current); plasma thermal content scales as I(P3)²

a 33% increase in I(P3) is planned for 2003

Scaling of plasma current with Induction Coil current and Toroidal Field

The Merging/Compression and CHI schemes could be used to initiate a large ST device, e.g. CTF (Component Test Facility)

Current ramp-up in MAST (1)

Current ramp rate vs. Vloop from solenoid, over typical set of early MAST discharges, **low power** (<1MW) NBI.

Current ramp-up in MAST (2)

High power NBI helps in 4 ways:

- hotter plasma \Rightarrow less resistive loss
- NBI Current Drive
- high $\beta_p \Rightarrow$ high bootstrap fraction
- increasing plasma energy ⇒
 increasing Bv ⇒ additional flux

Flux from Bv coils is especially important at low A

Compare two tokamaks of similar plasma area and current, assuming typical values li=1, $\beta_p=1$:

	A	k	R(m)	Ір	LI (Vs)	Vs	Vs
				(MA)	Associated	Provided	From
					(1)	by Bv (2)	solenoid
MAST	1.4	2	0.85	1.0	0.68	0.47	1
TFTR	3.5	1	2.5	1.0	5.5	2.5	12.5

For the ST, Bv flux is a bigger fraction

AND of a scarcer resource (1) S P Hirshman & G H Nielson, Phys Fluids **29** (1986) p790 (2) O. Mitarai & Y Takase, Fusion Science & Technology, Nov 2002 1.5 1.0 $\log(8A)-2$ (1) S P Hirshman & G H Nielson, Phys<math>(1) S P Hirshman & G H Nielson, Phys<math>(2) O. Mitarai & Y Takase, Fusion<math>(2) O. Mitarai & Y Takase, FusionScience & Technology, Nov 2002<math>(2) O. Mitarai & Y Takase, Fusion<math>(2) O. Mitarai & Y Takase, Fusion<math>(3) O. O = 0

A = 1.4

Current ramp rate is increased under strong NBI heating.

These results suggest that future experiments at PNBI ≥ 3MW should exhibit positive current ramp at zero solenoid loop voltage.

In MAST #4571, the discharge is maintained (approx. constant Ip, Ro) for ~100ms at zero solenoid loop voltage, using ~1.3MW of NBI

Estimates: at t=200ms, j(NBCD) ~ 65kA (10%) j(boot) ~ 160kA (26%)

SUMMARY

without central solenoid:

•an initial plasma can be produced using M/C or CHI (and possibly ECRH/EBW?)

•On MAST, plasma current can be <u>maintained</u> using NBI heating/CD

QUESTIONS

without central solenoid:

•Can we demonstrate plasma current <u>increase</u> at higher power NBI ?

•Can we 'handover' from initial plasma to a plasma ramp-up?

SIMULATION using ASTRA

Ejima scaling, modified by Gryaznevich asus, sim simul simul. simul JL , ITER, simul. Tora Supra CIT, simul. JT60 DIII Compass-E Compass-E TUMAN-3 DIII-D JET IFT-2M SA ST, ST WT-3 FTR N N N N 3.0 * \oplus $\Box + \Box$ $\Diamond \bigtriangledown \boxtimes$ \cap (2.5) $P^{2.0}$ 1.5 1.0Low aspect ratio Conventional aspect ratio Ejima scaling + new scaling 0.5 Ø⊗ 0.0 1.5 4.0 4.5 1.0 2.0 2.5 3.0 3.5 A = R/a $\Delta \psi_{surf} = C_{EW} \mu_0 I_{pl} R_0$, where $C_{EW} \sim 1$ **Ejima-Wesley: Gryaznevich:** $\Delta \psi_{\rm surf} = 0.4 \, (R/a) \, \mu_0 \, I_{\rm pl} \, R_0$

