Exploration of High Harmonic Fast Wave Heating on NSTX

J. R. Wilson 2002 APS Division of Plasma Physics Meeting November 11-15, 2002 Orlando, Florida

With contributions from

APS-DPP 2002

OUTLINE

- Role and Characteristics of High Harmonic Fast Wave (HHFW) heating
- Technical Application on NSTX
- Electron Heating and Confinement Results
- Current Drive Experiments
- Interaction with Fast Ions
- Future Work
- Summary

HHFW HEATING PROVIDES A TOOL FOR ELECTRON HEATING AND CURRENT DRIVE

- ST's need auxiliary current drive (CD)
- High beta plasma makes Lower Hybrid and conventional Electron Cyclotron CD impossible
- HHFW in high beta plasmas has strong single pass absorption on electrons
 - ➤ Can allow off-axis deposition

FLEXIBLE SYSTEM FOR HIGH POWER HHFW HAS BEEN INSTALLED ON NSTX

- Utilizes TFTR ICRF system
- 30 MHz Frequency corresponds to ω/Ω_{D} = 9-13
- 6 MW total power from 6 transmitters for up to 5 s
- 12 Element antenna with active phase control allows wide range of wave spectra

 $> k_T = \pm (3-14) \text{ m}^{-1}$

can be varied during shot

HHFW 12 ELEMENT ANTENNA ARRAY PROVIDES GOOD SPECTRAL SELECTIVITY

- Antenna takes up almost 90° toroidally
- Utilizes BN insulators to minimize rf sheaths

APS-DPP 2002

- Decouplers compensate for large mutual coupling between elements allowing phase control
- Ith and ith + 6 antenna currents hard wired out of phase

HHFW HEATS ELECTRONS IN NSTX, AS EXPECTED FROM THEORY

- For typical NSTX plasmas HHFW deposits all its power into electrons
 - > No evidence of direct thermal ion heating
 - HHFW does heat NBI ions
- Energy Confinement on NSTX follows conventional scaling predictions when heat is applied via the electron channel
- Improved electron energy confinement has been observed

HHFW PROVIDES STRONG ELECTRON HEATING

BOTH ELECTRONS AND IONS EXCEED NEOCLASSICAL IN HHFW HEATED PLASMAS

•Consistent with transport from Trapped Electron Modes

-Calculated to dominate in NSTX regime

Increasing χ_e with radius unlike NBI heating

HEATING WITH HHFW FOLLOWS PREDICTIONS OF CONVENTIONAL SCALING

SOME HHFWDISCHARGES DISPLAY BEHAVIOR OF INTERNAL TRANSPORT BARRIER

 T_e increases strongly inside half radius Density profile doesn't show change T_i (0) rises with T_e increase Prf = 2.5 MW Ip = 800 kA

INCREASE IN T_e CORRESPONDS TO DECREASE IN χ_e

- χ_e progressively decreases in the central region
- Power deposition from ray tracing
- T_{io}(t) obtained from X-ray crystal spectrometer

DIFFERENCES IN LOOP VOLTAGE WITH DIRECTED SPECTRA ARE CONSISTENT WITH CURRENT DRIVE

- Experiment performed at low electron beta and low current to maximize effect of rf current drive on loop voltage
- Compare discharges with wave phased ± (3-7) m⁻¹
- Adjust power levels and fueling to match density and temperature profiles
- Loop voltage differences seen in the absence of central MHD (sawteeth, m=1)
- Amount of driven current inferred from circuit analysis of magnetic signals is comparable to theoretical predictions

ELECTRON PARAMETERS MADE COMPARABLE BY ADJUSTING POWER AND FUELING

LESS LOOP VOLTAGE REQUIRED TO MAINTAIN $I_{\rm P}$ WITH CO PHASING

Internal inductance is similar for the two cases and ΔV is not caused by dl_i/dt Also seen at faster phasing - k_T = ±(3, 5) m⁻¹ APS-DPP 2002

CURRENT DRIVE MODELING ANALYSIS AND CODE PREDICTIONS IN ROUGH AGREEMENT

Circuit analysis (0D): $I_P = (V - 0.5*I_P*dL_i/dt)/R_P + I_{BS} + I_{CD}$

(Assumes steady state, R_P and I_{BS} (pressure profiles) independent of array phasing, $I_{CD} \propto P_{RF} / n_e)$

➢ I_{co} ≈ 110 kA (0.05 A/W)

- **Codes** Calculated electron power absorption profiles are coupled to the Ehst-Karney parameterization of the adjoint solution for current drive efficiency to obtain current density profiles
- **TORIC**: Full wave ICRF field solver $[(k_{\perp}\rho_i)^2 \le 1]$

> I_{co} ≈ 96 kA (0.05 A/W)

• **CURRAY**: Ray tracing code (all orders in $k_{\perp}\rho_i$)

I_{CO} ≈ 162 kA (0.08 A/W)

TRAPPING SIGNIFICANTLY REDUCES DRIVEN CURRENT

• The "no trapping" profile is indicative of the power deposition profile

Diamagnetic effects at high beta may reduce trapping

HHFW CURRENT DRIVE CONSISTENT WITH D-IIID AND TFTR CD EXPERIMENTS

Operation at increased Te required to meet NSTX goals Increased Power and improved confinement regime should allow this

HHFW PREDICTED TO INTERACT WITH FAST IONS

- Damping on beam ions may reduce current drive efficiency
- At high harmonic numbers (n \ge 9) ion damping can be important due to large $k_{\perp}\rho_i$

 \succ On NSTX k__ ρ_i ~ 10 for 80 keV beam ion

> Damping maximum when $\lambda = (k_{\perp}\rho_i)^2/2 \sim n^2/3$

 \sim 35 keV for n=9

NEUTRAL PARTICLE ANALYZER SHOWS FAST ION TAIL BUILD-UP AND DECAY

Tail decays on collisional time scale

RAY TRACING PREDICTS SIGNIFICANT ION ABSORPTION - COMPETITIVE WITH ELECTRONS

- HPRT computes hot plasma absorption over cold ion/hot electron ray path
- 25 rays used
- TRANSP output used as input for fast ion temp and density distribution
- Fast ions dominate central absorption, electrons further off-axis
- $T_{i,th} = 2 T_e (XCS)$, no thermal ion absorption

• Larger β_e promotes greater off-axis electron absorption reducing power available to centralized fast ion population

• Lower on-axis absorption for lower B, higher β predicted APS-DPP 2002

APS-DPP 2002

SUMMARY

- HHFW PROVIDES MEANS OF ELECTRON HEATING ON NSTX
 - Confinement consistent with predictions of standard scaling
 - Improved confinement regime observed
- INITIAL EVIDENCE OF CURRENT DRIVE
 - Driven current is consistent with modeling and previous FWCD experiments
 - Increased Te needed to achieve NSTX goals
 - Improved confinement regime
 - Higher power
- INTERACTION BETWEEN HHFW AND NBI IONS
 OBSERVED

> Ion interaction decreases with increasing electron beta