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OUTLINE

• Role and Characteristics of High Harmonic Fast

Wave (HHFW) heating

• Technical Application on NSTX

• Electron Heating and Confinement Results

• Current Drive Experiments

• Interaction with Fast Ions

• Future Work

• Summary
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HHFW HEATING PROVIDES A TOOL FOR
ELECTRON HEATING AND CURRENT DRIVE

• ST’s need auxiliary current drive (CD)

• High beta plasma makes Lower Hybrid and

conventional Electron Cyclotron CD impossible

• HHFW in high beta plasmas has strong single

pass absorption on electrons

!Can allow off-axis deposition
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FLEXIBLE SYSTEM FOR HIGH POWER
HHFW HAS BEEN INSTALLED ON NSTX

• Utilizes TFTR ICRF system

• 30 MHz Frequency corresponds to ω/ΩD = 9-13

• 6 MW total power from 6 transmitters for up to 5 s

• 12 Element antenna with active phase control

allows wide range of wave spectra

!  kT = ± (3-14) m-1

!  can be varied during shot
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•   Antenna takes up almost 90° toroidally
•   Utilizes BN insulators to minimize rf sheaths

HHFW 12 ELEMENT ANTENNA ARRAY
PROVIDES GOOD SPECTRAL SELECTIVITY
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• Decouplers compensate for large mutual coupling between elements allowing
phase control
• Ith and ith + 6 antenna currents hard wired out of phase

DIGITAL PHASE FEEDBACK CONTROL SYSTEM
SETS THE PHASE BETWEEN ANTENNA 1-6
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HHFW HEATS ELECTRONS IN NSTX, AS
EXPECTED FROM THEORY

• For typical NSTX plasmas HHFW deposits all its power into

electrons

! No evidence of direct thermal ion heating

!  HHFW does heat NBI ions

• Energy Confinement on NSTX follows conventional scaling

predictions when heat is applied via the electron channel

• Improved electron energy confinement has been observed
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HHFW PROVIDES STRONG ELECTRON HEATING

Te > Ti

He Discharge

NOTE LOW INTIAL Te

• B = 0.44 T

• kT = 14 m-1

• ne0 = 4.0 x 1019 m-3
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BOTH ELECTRONS AND IONS EXCEED
NEOCLASSICAL IN HHFW HEATED PLASMAS

 χi
NC < χi

 , χe

Increasing χe with radius
unlike NBI heating

t = 0.24 s

•Consistent with transport from Trapped
Electron Modes

–Calculated to dominate in NSTX regime

RF power deposition from

HPRT ray tracing code 
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HEATING WITH HHFW FOLLOWS PREDICTIONS
OF CONVENTIONAL SCALING
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LARGE Te INCREASE

SOME HHFWDISCHARGES DISPLAY BEHAVIOR
OF INTERNAL TRANSPORT BARRIER

Te increases strongly inside
half radius
Density profile doesn’t show
change
Ti (0) rises with Te increase
Prf = 2.5 MW
Ip = 800 kA
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INCREASE IN Te CORRESPONDS TO
DECREASE IN χe

•  χe progressively

decreases in the central
region

• Power deposition from
ray tracing

• Tio(t) obtained from X-ray
crystal spectrometer
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DIFFERENCES IN LOOP VOLTAGE WITH DIRECTED
SPECTRA ARE CONSISTENT WITH CURRENT DRIVE

• Experiment performed at low electron beta and low current
to maximize effect of rf current drive on loop voltage

• Compare discharges with wave phased ± (3-7) m-1

• Adjust power levels and fueling to match density and
temperature profiles

• Loop voltage differences seen in the absence of central
MHD (sawteeth, m=1)

• Amount of driven current inferred from circuit analysis of
magnetic signals is comparable to theoretical predictions



ELECTRON PARAMETERS MADE COMPARABLE
BY ADJUSTING POWER AND FUELING

IP = 500 kA, BT = 4.5 kGTemperature profiles matched
throughout discharges
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 Internal inductance is similar for the two cases and ∆V is not caused by dli/dt
Also seen at faster phasing - kT = ±(3, 5) m-1

LESS LOOP VOLTAGE REQUIRED TO MAINTAIN
IP WITH CO PHASING
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CURRENT DRIVE MODELING ANALYSIS AND
CODE PREDICTIONS IN ROUGH AGREEMENT

Circuit analysis (0D):  IP = (V- 0.5*IP*dLi/dt)/RP + IBS + ICD

      (Assumes  steady state, RP and IBS (pressure profiles) independent of
array phasing, ICD ∝ PRF/ne)

!     ICO ≈≈≈≈ 110 kA  (0.05 A/W)

Codes - Calculated electron power absorption profiles are coupled to the
Ehst-Karney parameterization of the adjoint solution for current drive
efficiency to obtain current density profiles

• TORIC:  Full wave ICRF field solver [(k⊥ρi)2 << 1]

!       ICO ≈≈≈≈ 96 kA  (0.05 A/W)
• CURRAY:  Ray tracing code (all orders in k⊥ρi)

!       ICO ≈≈≈≈ 162 kA   (0.08 A/W)



• The “no trapping” profile is indicative of the power deposition profile
• Diamagnetic effects at high beta may reduce trapping

TRAPPING SIGNIFICANTLY REDUCES
DRIVEN CURRENT
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C. Petty et al., Plasma Physics
and Controlled Fusion 43
(2001) 1747

HHFW CURRENT DRIVE CONSISTENT WITH
D-IIID AND TFTR CD EXPERIMENTS

Operation at increased Te required to meet NSTX goals
Increased Power and improved confinement regime should allow this
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HHFW PREDICTED TO INTERACT WITH
FAST IONS

• Damping on beam ions may reduce current

drive efficiency

• At high harmonic numbers (n ≥ 9) ion damping

can be important due to large k⊥ρi

!On NSTX k⊥ρi ~ 10 for 80 keV beam ion

!Damping maximum when λ = (k⊥ρi)2/2 ~ n2/3

~ 35 keV for n=9
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• D+ tail extends to 130 keV
• Tail saturates in time during HHFW
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• Tail decays on collisional time scale

NBI 1.6 MW

RF 2.4
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NEUTRAL PARTICLE ANALYZER SHOWS FAST
ION TAIL BUILD-UP AND DECAY
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r/a

• HPRT computes hot plasma
absorption over cold ion/hot
electron ray path

• 25 rays used

• TRANSP output used as input
for fast ion temp and density
distribution

• Fast ions dominate central
absorption, electrons further
off-axis

• Ti,th = 2 Te (XCS), no thermal
ion absorption

ne0 = 3.2 × 1013 cm-3

nb0 = 2.5 × 1012 cm-3

Te0 = .6 keV
Tb0 = 17.3 keV

Pe=55%
Pb=45%Dbeam

e-

Shot 105908    Time 195 ms

RAY TRACING PREDICTS SIGNIFICANT ION
ABSORPTION - COMPETITIVE WITH ELECTRONS
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• Larger βe promotes greater off-axis electron

absorption reducing power available to centralized
fast ion population

B0=4.5 kG
B0=4.0 kG
B0=3.5 kG

beam injection
energy
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B0=3.5 kG

NBI

HHFW
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TAIL REDUCED AT LOWER B, HIGHER β
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βt=9%, B0=3.5 kG

Pe=73%
Pb=24%

e-

Dbeam

• Lower on-axis absorption for lower B, higher β predicted

βt=5%, B0=4.5 kG

Pe=62%
Pb=37%

Dbeam

e-

OBSERVATION OF REDUCED FAST ION
ABSORPTION AT HIGHER β IS CONSISTENT WITH

THEORY
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FUTURE WORK INCLUDES EXTENDING RF
CURRENT DRIVE TO LONG PULSE SUSTAINMENT

βp =1

IBS/IP  = 0.4
q(0) rises

 li drops
kT = ±14 m-1

• High beta poloidal H-mode plasmas provide
excellent target for long pulse sustainment

Te(0)
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• HHFW PROVIDES MEANS OF ELECTRON
HEATING ON NSTX
! Confinement consistent with predictions of standard scaling
! Improved confinement regime observed

• INITIAL EVIDENCE OF CURRENT DRIVE
! Driven current is consistent with modeling and previous

FWCD experiments
! Increased Te needed to achieve NSTX goals

• Improved confinement regime
• Higher power

• INTERACTION BETWEEN HHFW AND NBI IONS
OBSERVED
! Ion interaction decreases with increasing electron beta

SUMMARY


