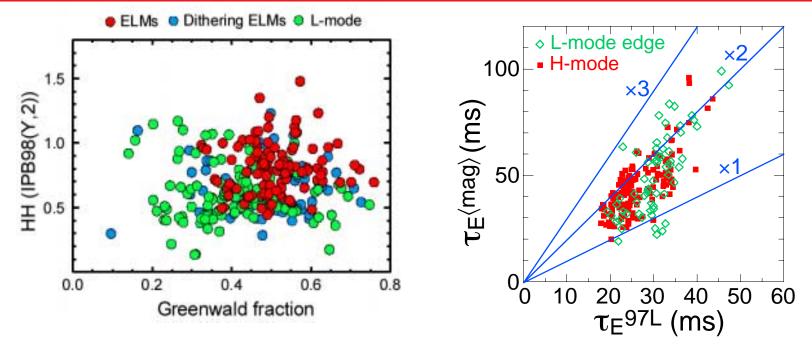
Summary of Topics A3/B3: Experiment/Theory of Transport & Turbulence

M.G. Bell

- topical summary, not a session summary
- my impressions, not a concensus!


Many Talks Included Transport Component

• Experiment

– Kaye

- Gryaznevich Overview of MAST Results
- Bell Overview of NSTX Results
- Wilson HHFW H&CD in NSTX
- Akers NBI H&CD in MAST
 - NSTX confinement results
- Bush *H-mode, ELMs in NSTX*
- Zweben Imaging of edge turbulence
- Stutman Poloidal Ultrasoft X-Ray System on NSTX
- Theory
 - Bourdelle
 - Shaing
- Gyrokinetic simulation
- Magnetic island effects on confinement

Confinement with NBI Is Good *But..* There Are Interesting Differences

- Routine H-mode operation in both MAST, NSTX
- L and H -modes overlap in τ_E and H factor
- Good confinement extends to quite high density
- Single parameter scans reveal different dependences:

 $- \tau_{\rm E}^{\rm NSTX-L} \propto I_{\rm p}^{\rm 0.76} B_{\rm T}^{\rm 0.27} P^{\rm -0.76}; \tau_{\rm E}^{\rm NSTX-H} \propto P^{\rm -0.5}$

• With HHFW heating in NSTX, confinement is not so enhanced *STW2002/021121/MGB*

Ion Channel Appears Good

- With NBI, $T_i > T_e$ despite $P_{b,i} < P_{b,e}$
 - − $T_i(0) \approx 3 \text{keV}$ in MAST at $n_e(0) \approx 2 \times 10^{19} \text{m}^{-3}$
 - $-\chi_{I} < \chi_{I}^{NCLASS}$ in mid-regions of profile in NSTX
 - T_i anomalously high at mid-radius in some cases
- High toroidal rotation rates are measured
 - extreme radial gradients in T_i , v_{ϕ} tend to coincide role in turbulence suppression
- Particle confinement barriers are also observed
- Electron profiles with NBI are very stiff in NSTX but...
- With HHFW, electron ITBs have been observed
- NBI current drive is playing a role in both MAST, NSTX
 - benefit of good fast-ion confinement

Theoretical Insights

- Analysis of micro-stability for NSTX plasmas (positive shear) shows
 - increasing growth of ITG with β' up to a critical β' , then
 - decreasing ITG for higher β' until KBM destabilized
 - could give rise to bifurcation in transport properties
 - $\tau_E \propto P^{\alpha}$, $\alpha < 0$ for low β , $\alpha > 0$ for higher β
 - Similar behavior for ETG and TEM
 - But, β' threshold for bifurcation is well above present NSTX level (x2)
 - Threshold could be reduced by lower η_{I}
 - role for pellet injection?
 - would this be compatible with high β necessary?

Theory (2)

- Effects of magnetic islands on transport nearby
 - radial particle flux driven by symmetry-breaking perturbation
 - can spontaneously generate local E_r
 - suppress turbulence & associated transport in neighboring region
- May help to explain occurrence of some types of ITB associated with low-order rational surfaces in conventional tokamaks

- equally applicable to STs

Confinement and Transport Issues

- Although confinement can be good relative to conventional tokamak scalings, there are problems:
 - single parameter dependences are not established
 - very unfavorable power dependence (P^{-0.75}) in some conditions in NSTX
 - Confinement during rise in W_{tot} is much better than in steady state
 - role of pressure-driven instabilities?
 - Electrons appear to respond to B, not I (NSTX)
- Micro-stability theory suggests interesting possibilites but
 - Can we achieve β ' levels to reap the benefits
 - Are benefits of lower η_l compatible with high β ?