

Session II: Special Diagnostics

Summary by R. Kaita

Eighth International ST Workshop 18-21 November 2002

Progress in Profile Diagnostics

- Ultrasoft X-Ray Arrays (Stutman)
 - ST challenges
 - High time resolution to observe MHD
 - Strong edge gradients require "two-color" measurements for mode structure
 - Future plans
 - Miniature re-entrant array with 200 kHz time resolution
 - Tangential array with 100 kHz, 1300 pixels (proposed)
- Multichord Reflectometry (Kubota)
 - High time resolution profiles
 - Clear L to H transition in profiles every 1.2 ms
 - Very fast density changes correlated with 100-150 kHz magnetic oscillations
 - Future plans
 - Fast FMCW, 3-channel quadrature, and radial correlation reflectometers
 - Higher frequencies (65 GHz) and 100 kHz sweep rates planned

Progress in Profile Diagnostics (cont.'d)

- D-alpha Measurements of Density Gradients (Tournianski)
 - Edge electron density profiles important for H-mode studies
 - D-alpha data give profiles with good temporal and spatial resolution
 - EBW emission correlates well with D-alpha density gradients
- Far Infrared Interferometry and Polarimetry (Lee)
 - Good progress with two-channel system
 - Vibrations eliminated and data compare well with Thomson scattering
 - "Ear" structure observed and measured across H-mode transition
 - Future plans
 - Faraday rotation measurements
 - Increase number of channels (2->4) and laser power (50 -> 90 W)

New Diagnostic Techniques

- Electron Bernstein Wave Emission Diagnostics (Shiraiwa)
 - Electron Bernstein wave (EBW) system working on TST-2
 - Consists of heterodyne detection radiometer and AM reflectometer
 - Permits monitoring of mode conversion efficiency by correlating changes in T_{rad} with variations in density
- X-Ray Spectroscopy (Bitter)
 - Spherical crystals permit X-ray imaging instrument
 - No need for neutral beam injection for ion temperature measurements
 - 1 cm spatial resolution and 10 ms time resolution demonstrated with RFheated plasma
 - Future plans are for two-dimensional detector
 - Multiwire proportional counters (BNL and K-Star) for 500 kHz range
 - GEM detector with delay line readout being developed to get into MHz range

Progress in Imaging Diagnostics

- Fast X-Ray Imaging (Pacella)
 - Time-resolved X-ray images obtained
 - Based on gas electron multiplier (GEM) detector
 - Proportional counter means in 128 "low resolution" spectrometers
 - Rotating mode structure seen in 80 cm x 80 cm field of view
 - Future plans
 - "Zoom" feature for improved spatial resolution
 - Increase energy range from 3-8 keV to 0.2 10 keV
- GEM system one of three 2-D tangential soft X-ray imaging systems on NSTX
 - Soft X-Ray Pinhole Camera
 - Standard CCD camera used to image window coated with phosphor scintillator
 - Fast X-Ray Pinhole Camera
 - Uses fast-framing CCD camera with on-chip memory storage for high speed

Current Profile Diagnostics

- Motional Stark Effect Measurements on NSTX (Levinton)
 - Collisionally-Induced Fluorescence (CIF)
 - Throughput maximized with large number of fibers
 - 10 channels at start and 19 channels at end of FY03 run
 - Laser-Induced Fluorescence (LIF)
 - RF source for beam under development at Berkeley
 - Availability expected for 2006

Summary and Recommendations

- Summary
 - Data show need for improved temporal and spatial resolution
 - All upgrades seek to add channels and increase time response
 - Efforts complement development of fluctuation diagnostics
- Recommendation
 - Data for internal equilibrium constraints will be major focus in FY03 run
 - Motional Stark effect polarimetry
 - Microwave reflectometry and interferometry
 - Far infrared interferometry
 - GEM and pinhole camera soft X-ray imaging
 - Successfully demonstrated for ST by constraining q(0) on Pegasus
 - Each constrains q(0) but "cross checking" important in new class of devices like ST's
 - Precedent set in current profile diagnostic development on PBX-M
 - Simultaneous exploration of Motional Stark effect polarimetry, X-ray pinhole camera, and fast ion orbit shift diagnostics built confidence in measurements

