Session V Summary Wave - Fast Ion - Plasma

Y. Takase

HHFW H&CD

• HHFW absorption

- Determine absorption efficiency, power deposition profile
- Ion damping (abs. by beam ion): more electron damping at higher β ?
- HHFW CD
 - ~100kA driven current inferred (NSTX)
 - Document current drive efficiency, controllability
- Bootstrap current generation by electron heating
 - $\sim 40\% I_{BS}/I_p (NSTX)$
- ITB formation by HHFW heating?

EBW H&CD

• Mode conversion efficiency

- ~100% with local limiter (CDX-U)
- Up to 50% in NSTX so far (higher
 MC efficiency to be demonstrated)
- Direct measurement by reflection (TST-2)
- EBW CD
 - EC/EBW start-up and CD (LATE)
 - Direction control by poloidal launch angle
 - Good localization for NTM stabilization up to $\beta < 20\%$
 - Edge absorption for $\beta > 40\%$?
- Best scenario for H&CD to be determined
 - EBW H&CD experiment starting in MAST
 - Tube development may be necessary

NB H&CD

- NB fast ion confinement
 - Fast ion confinement classical in quiescent plasmas
 - Large orbit size, nonadiabatic ion motion (μ not constant)
 - Successful heating with counter NBI (MAST)
- NBCD
 - $I_{\rm NB}/I_{\rm p} = 20-30\% \,({\rm MAST})$
 - $I_{NB}/I_p = 20\%, I_{BS}/I_p = 40\%$ (NSTX) 60% noninductive

Energetic Particle Driven Instabilities and Fast Ion Loss

- Anisotropy in fast-ion pitch angle distribution drives CAE and GAE
 - At low n (2 < n < 7) GAE (shear Alfven, center) $\omega/\omega_{ci} = 0.3-0.4$
 - For higher n (n > 7) localized CAE (edge)
- Fast ion losses: up to 20% in NSTX
 - TAE burst + fishbone
 - Fishbones: frequency chirping and periodic bursting (n up to 5)
 - mode amplitude largest in the core
 - Fast ion loss by ones that chirp to low frequency
- Energy channeling (fast ions → thermal ions) by GAE/CAE?
- Need to develop basis to extrapolate to future ST, ITER, etc.

