Plasma Startup via Local Helicity Injection and Stability Studies at Near-Unity Aspect Ratio in the Pegasus Experiment

R.J. Fonck, J.L. Barr, M.W. Bongard, M.G. Burke, E.T. Hinson, A.J. Redd, N. Schoenberg, D.J. Schlossberg,K.E. Thome

> The Joint Meeting of 5th IAEA Technical Meeting on Spherical Tori

16th International Workshop on Spherical Torus (ISTW2011)

2011 US-Japan Workshop on ST Plasma

National Institute for Fusion Science, Toki, Japan September 27-30, 2011

PEGASUS Mission: Physics of Low A \rightarrow 1

- University-scale, Low-A ST
 − R₀ ≤ 0.45 m, a ~ 0.40 m
- Physics of High I_p/I_{TF}
 - Expand operating space of the ST
 - Study high β_T plasmas as $A \rightarrow 1$
- Non-solenoidal startup
 - Point-source helicity injection
 - Helicity injection discharges couple to other current drive methods
- Peeling-mode studies
- Experimental tests of peeling-ballooning theory (ELM, ITER)

Local Plasma Current Sources + Helical Vacuum Field Give Simple DC Helicity Injection Scheme

- Current is injected into the existing helical magnetic field
- High I_{inj} & modest B \Rightarrow filaments merge into current sheet
- High I_{inj} & low B \Rightarrow current-driven B_{θ} overwhelms vacuum B_z
 - Relaxation via MHD activity to tokamak-like Taylor state w/ high toroidal current multiplication

Current filaments

Relaxed tokamak

• Technical attractiveness: can remove sources and anode after startup

DC Helicity Injection Startup on PEGASUS Utilizes Localized Washer-Gun Current Sources

- Plasma gun(s) biased relative to anode:
 - Helicity injection rate:

$$\dot{K}_{inj} = 2V_{inj}B_NA_{inj}$$

Simplified illustration of a plasma gun for helicity injection *(not to scale)*

Evolution of midplane-gun-driven plasma

PEGASUS shot #40458: two midplane guns, mild outer-PF ramp

t=21.1 ms, I_p=2-3 kA Filaments only t=28.8 ms, I_p =42 kA t=30 Driven diffuse plasma Gun

t=30.6 ms, I_p=37 kA Guns off, Decaying

Taylor Relaxation Criteria Sets the Maximum Ip for a Given Magnetic Geometry

Helicity balance in a tokamak geometry:

$$\frac{dK}{dt} = -2\int_{V} \eta \mathbf{J} \cdot \mathbf{B} \, \mathrm{d}^{3} \mathrm{x} - 2\frac{\partial \psi}{\partial t} \Psi - 2\int_{A} \Phi \mathbf{B} \cdot \mathrm{d} \mathbf{s}$$

$$I_{p} \leq \frac{A_{p}}{2\pi R_{0} \langle \eta \rangle} \left(V_{ind} + V_{eff} \right)$$

- Helicity injection can be expressed as an effective loop voltage
- I_p limit depends on the scaling of plasma confinement via the η term

Taylor relaxation of a force-free equilibrium:

$$\nabla \times B = \mu_0 J = \lambda B \qquad \implies \qquad \frac{\mu_0 I_p}{\Psi_T} \le \frac{\mu_0 I_{inj}}{2\pi R_{inj} W B_{\theta,inj}} \implies I_p \le \left[\frac{C_p}{2\pi R_{inj} \mu_0} \frac{\Psi_T I_p}{W_T} \right]$$

Assumptions:

- Driven edge current mixes uniformly in SOL
- Edge fields average to tokamak-like structure

¹ inj

A_p Plasma area

Г

- C_p Plasma circumference
- $\Psi_{\rm T}$ Plasma toroidal flux
- *w* Edge current channel width

Achieving the Maximum I_p at the Taylor Limit Requires Sufficient Helicity Injection Input Rate

 Sufficient net V-sec needed to reach Taylor relaxation limit

Experiments Confirm Relaxation Limit Scalings with I_{TF} and I_{ini}

• The relaxation limit I_p scales with:

$$I_p \propto \left[\frac{I_{TF}I_{inj}}{W}\right]^{1/2}$$

Experimental plasma current limits follow these scalings:

Slowly-evolving Gun-driven Plasmas Hand Off Most Efficiently to Ohmic Drive

- Poloidal flux generated by helicity injection is equivalent to that generated by Ohmic Drive
 - $\ I_{total} = I_{HI} + I_{OH}$
- Excessive skin current => poor coupling to OH drive
- Slowly evolving: ~ flat j(r) (black)
 - Smooth handoff to Ohmic inductive drive (j(R) profiles from external-only equilibrium reconstructions; $l_i < 0.3$)
- Rapidly evolving: ~ hollow, strong skin j(r) (red)

- Does not hand off efficiently to Ohmic drive

Initial Spectroscopy Measurements Suggest Energetic Ions

Spectroscopic T_i suggest high ion energies during reconnection period

- However, situation is much more complex if viewed toroidally
 - Need improved time-resolution and spatial scans

Several Issues to Address for a Predictive Model

- Extension to higher current, longer pulse
 - Verify limit scalings
 - Discharge evolution for long growth phase
 - Test confinement properties, especially $T_e(r,t)$
 - Helicity dissipation scaling model
- Optimal gun-electrode configuration
- Increased helicity injection rate
 - Test regime where helicity drive dominates PF induction for growth
 - Active guns vs. passive electrode approach for long-pulse growth
- Injected current source impedance model
 - What sets helicity injection rate?
- Edge j(r) measurements and $\lambda(\psi,t)$
 - Physics of ultimate relaxation limits
 - Current transport: MHD behavior
- RJF ISTW 2011 Impurity assessment and control

Gun-Electrode Geometry: PF Induction, Plasma Size, and Null Formation

- Original: array was nearly vertical (red):
 - J_{edge} width *w* scaled with # of guns
 - Maximum $I_p = 0.11$ MA.
- Aligned gun array tilt (green):
 - Maximum $I_p = 0.17$ MA.
 - 3-fold reduction in *w*., consistent with changing the projected width at midplane.
- Maximize plasma size: array moved further away from midplane (blue):
 - Maximum $I_p \sim 0.13$ MA
 - Larger startup plasma = *reduced PF induction*
 - *Poorer poloidal field null* formed by current streams = more difficult to induce relaxation to tokamak state
- Tight gun-anode geometry preferred

THE UNIVERSITY

Active Gun / Passive Electrode Assembly Points to Simpler, Higher I_p Operation

- Potential for much higher I_{inj} without need for either more plasma guns or larger guns.
- Helicity injection physics is agnostic to the exact source of the edge charge carriers.
- Passive electrodes allow arbitrary shaping:
 - Can optimize both helicity input (large cross-sectional area) *and* the Taylor limit on I_p (narrow in radial direction)

Initial Tests of Gun/Electrode Helicity Injection System Are Promising

• Operations use two steps:

- 1. Form initial tokamak-like state with minimal active arc gun
- 2. Grow to much larger I_p with passive electrodes fed by electrode charge carriers induced and moderated by tokamak edge plasma.
- First tests are promising
 - Arc current off after relaxation and formation of tokamak-like state
 - I_p rise is virtually the *same*, whether arc discharge or passive electrode provide the charge carriers

Integrated Arc Gun – Passive Electrode Experiments Begun

- New gun-electrode assembly has has extended electrode coupled to arc gun exit cathodes
 - Offers 5-times increase in helicity injection rate
- Integrated scraper limiters to protect assembly and control local edge density
 - Gas-puff control of

 $V_{bias} \sim V_{loop, effective}$

Local limiters

Local Limiters Reduce N to Negligible Levels in Well-behaved Injection Cases

- N dominant impurity with unprotected gun assembly
 - 1st estimates of impurity content via bolometer measures
 - $Z_{eff} \sim 2.2$. +/- 0.8 during injection; ≤ 1.4 after injection
 - Mainly N; n_e ~ 5 x 10¹⁸ m⁻³ to 2 x 10¹⁹ m⁻³
- Local scraper limiters much reduce N, O remains
- Bursts of N still evident with flare at BN surface
- Ohmic-only reference plasma very clean
 - Zeff ≤ 1.2

Intensity (counts) 800 No limiters 600 47344 400 200 0 3000 (counts) Scraper limiters 2000 52945 Intensity 1000 ntensity (counts) 1600 Scraper limiters 1200 BN "flare" 53469 800 400 0 OH driven 40 ntensity (counts) 52415 30 20 10 200 400 600 800 1000 1200 0 Wavelength (A) THE UNIVERSITY

Source Impedance Appears to be Governed by Sheath Physics

- Model evolving for source impedance ~ helicity injection rate
 - Predicative model requires edge density measurements
- Initiation phase: vacuum space charge limitation
 - $I_{\text{bias}} \sim V^{3/2} / d^2$
- High I_{bias} drive phase: expanding double layer sheath² - $d^2 \sim V => I_{bias} \sim V^{1/2}$

Intermittent 20 - 60 kHz n = 1 mode observed with strong edge current drive

- Bursts of n = 1 magnetic oscillations
 - Observed when plasma is coupled to edge current drive
 - Different in nature from inboard current injection experiments

The magnetic topology quickly changes with each burst of MHD activity

- Each burst typically ~ 0.1 ms
- With each burst...
 - I_i decreases $\rightarrow I_p$ increases
 - $R_0 \text{ decreases} \rightarrow \text{plasma}$
expands
 - − $B_{\phi O}$ increases → q_O increases
 - Slight drop in E_k and E_m
 - Very little change in poloidal flux at plasma edge
 - Rapid decrease in the total trapped poloidal flux

Current Drive Tools Providing Access to High Field Utilization Regime

OH only = large 2/1 modes limit I_p

HI startup = MHD quiescent

- Helicity injection startup and Ohmic sustainment provides MHD-stable profiles at $I_p/I_{TF} < 1$
- Need to extend to higher I_p , then to low I_{TF} for high I_N and high β_T as $A \approx 1$

Medium-Term Upgrades Will Allow Further Tests of Point-Source Helicity Injection

- Gun-electrode Evolution
 - Passive electrode material variations
 - C electrode being installed
 - Separate plasma gun and electrode
- Power Supplies, Heating
 - New helicity injection power: 2 kV, 15 kA
 - Double TF current: *Taylor limit increase*
 - Commission HHFW system: *electron heating*

Expanded PF Coil Set and control

- Internal coils for radial position control
- New external divertor coils
- Implement GA Plasma Control System
- Diagnostic Additions
 - Multipoint Thomson Scattering
 - High-speed $T_i(r,t)$
 - Anomalous reconnection heating

Thomson Scattering system uses new technologies for visible wavelength system

- Frequency doubled Nd:YAG laser provides ~10¹⁸ photons
- For typical PEGASUS plasma, $n_{scattered} \sim 10^4$ photons
- VPH grating efficiency >85% for $\lambda_{inc} = 532 632$ nm
- Gen III image intensifiers ~50% efficient in visible region
- ~ 6 ns ICCD gating provides easy detector technology

Laser Specifications	Value
Output Energy at 532 nm	≥ 2000 mJ
Beam diameter at head	12 mm
Beam diameter at waist	3 mm
Pointing stability	≤ 50 µrad
Divergence	≤ 0.5 mrad
Repetition Rate	≤ 10 Hz
Pulse length	≥ 10 ns

HI Conclusion: High-Ip Non-Solenoidal Startup via Point-Source Helicity Injection Looks Promising

- Significant progress with non-solenoidal startup of ST
 - $I_p \sim 0.17$ MA using helicity injection and outer-PF rampup
 - Using understanding of helicity balance and relaxation current limit to guide hardware and operational changes
 - So far, predicted scalings supported
 - Goal $\approx 0.3-0.4$ MA non-solenoidal I_p to extrapolate to next level/NSTX
 - Outstanding physics questions: $\dot{\lambda}_{edge}$, Z_{inj} , confinement, *etc*.
 - Deploying plasma diagnostics to better understand properties
- Exploration of high I_N , β_t space facilitated by j(r) tools - $I_p/I_{TF} > 2$, $I_N > 14$ achieved; extend operation to high I_p , n_e for high β_t
- Holds Promise as a Scalable Non-Inductive Startup Technique
 - Simpler injection system using plasma gun passive electrode combination may be feasible

Some Low-A ST ITER-relevance: Access to Peeling Instability and Conditions to Measure J

- Spherical tokamaks naturally provide strong peeling drive
 - Toroidal field utilization $I_p/I_{tf} \sim j_{\parallel}/B$
- PEGASUS accesses peeling modes
 - Strong j_{\parallel}/B MA/m²-T at
 - Comparable to DIII-D in H-mode
- Machine parameters permit internal edge measurements
 - Short pulse lengths (< 50 ms)
 - Modest $T_e < 200 \text{ eV}$

PEGASUS Hall Probe Deployed to Measure J

- Solid-state InSb Hall sensors
 - Sypris model SH-410
- 16 channels, 7.5 mm radial resolution

- Slim C armor as low-Z PFC
 - Minimizes plasma perturbation
- 25 kHz bandwidth

\mathbf{S} J_{ϕ}(R,t) Calculable Directly from Ampère's Law

$$\mu_0 J_\phi = (\nabla \times \mathbf{B})_\phi = \frac{\partial B_R}{\partial Z} - \frac{\partial B_Z}{\partial R}$$

- Simplest test follows from $B_R(Z)$ or $B_Z(R)$ measurements
- Petty* solves for an off-midplane B_Z(R) measurement set and an elliptical plasma cross-section:

$$\mu_0 J_{\phi} = -\frac{B_Z}{\kappa^2 \left(R - R_0\right)} \left(1 - \frac{Z^2 R_0}{\kappa^2 R \left(R - R_0\right)^2}\right) - \frac{dB_Z}{dR} \left(1 + \frac{Z^2}{\kappa^4 \left(R - R_0\right)^2}\right)$$

• Does not make assumptions on shape of J(R)

*: Petty, et al., Nucl. Fusion 42, 1124 (2002)

Direct $J_{\phi}(R)$ Profiles Obtained in PEGASUS

- Straightforward J estimation
 - Obtain Hall Probe $B_z(R,t)$
 - Compute dB_Z/dR using interpolated smoothing spline^{*}
 - Compute $J_{\phi}(R,t)$ given geometry
- Resultant $J_{\phi}(R,t)$ consistent with I_{p} , MHD evolution
- Radial span extendible with multi-shot averaging
- Higher-order shaping effects negligible within errors

Peeling MHD Strongly Scales with Theoretical Drive

- Mode helicities estimated from port 8 Mirnov array
 - n < 3 via cross-phase analysis
 - $-m_{lab} \ge 10$ via radial decay rate
 - $-10 \le m_{lab} / n \le 30 (\psi \downarrow N > 0.9)$
- MHD power spans two orders of magnitude with factor-offive variation in J/B

Stability Analysis Confirms Peeling Instability

- Analytic peeling criterion computed from Hallconstrained equilibrium indicates instability
 - More than factor of two in region of optimal $(/ \downarrow \phi)$ constraint
- Free-boundary ideal stability analysis performed with DCON
 - Indicates instability to m/n = 19/1 external kink
- Both methods agree with experiment

J_{edge} Dynamics Measured on ELM Timescales

- J_{edge} resolved during peeling filament generation
- Propagating filament forms from initial "current-hole" J_{edge} perturbation
 - Validates formation mechanism
 hypothesized by EM blob transport
 theory
- Filament carries toroidal current I_f ~ 100–220 A
 - Comparable to MAST ELM estimates
 - I_f < 0.2 % of I_p

Bongard et al., Phys. Rev. Lett. 107, 035003 (2011)

Filament Radial Motion Qualitatively Consistent with Electromagnetic Blob Transport

- Trajectory of detached filament tracked with 275 kHz imaging
 - Radially accelerates, followed by constant velocity motion
- Magnetostatic repulsion^{*} plausibly contributes to dynamics
 - Current-hole $J \times B$ drives aR
 - Transition at ~ 35 µs comparable to healing time of current-hole
- Measured VR comparable to available EM blob models^{**}
 - *VR* ~ 4 km/s; *VR,IB* ~ 8 km/s
 - Agrees to O(1) accuracy of theory

Bongard et al., Phys. Rev. Lett. 107, 035003 (2011)

**: Myra et al., Phys. Plasmas 12, 092511 (2005)

*: Myra, Phys. Plasmas 14, 102314 (2007)

Peeling Mode / ELM Conclusions

- Direct measurements of J_{edge} conducted with Hall probe
 - Direct analysis, equilibrium reconstruction
 - J_{edge} controllable with dI_p/dt
- Characteristics of Peeling Modes Consistent with Theory
 - Macroscopic features: Low-n, high-m external kink
 - Onset consistent with ideal MHD, analytic peeling stability theories
 - Observed MHD scales with measured J/B peeling drive
 - Coherent, propagating filaments
- J_{edge} dynamics supports current-hole & EM blob hypotheses
 - Nonlinear filaments generated from current-hole J_{edge} perturbation
 - Transient magnetostatic repulsion
 - Constant- V_R propagation in agreement with available EM blob theory

HI Conclusion: High-Ip Non-Solenoidal Startup via Point-Source Helicity Injection Looks Promising

- Significant progress with non-solenoidal startup of ST
 - $I_p \sim 0.17$ MA using helicity injection and outer-PF rampup
 - Using understanding of helicity balance and relaxation current limit to guide hardware and operational changes
 - So far, predicted scalings supported
 - Goal $\approx 0.3-0.4$ MA non-solenoidal I_p to extrapolate to next level/NSTX
 - Outstanding physics questions: $\dot{\lambda}_{edge}$, Z_{inj} , confinement, *etc*.
 - Deploying plasma diagnostics to better understand properties
- Exploration of high I_N , β_t space facilitated by j(r) tools - $I_p/I_{TF} > 2$, $I_N > 14$ achieved; extend operation to high I_p , n_e for high β_t
- Holds Promise as a Scalable Non-Inductive Startup Technique
 - Simpler injection system using plasma gun passive electrode combination may be feasible

Plasma Startup via Local Helicity Injection and Stability Studies at Near-Unity Aspect Ratio in the Pegasus Experiment

R.J. Fonck, J.L. Barr, M.W. Bongard, M.G. Burke, E.T. Hinson, A.J. Redd, N. Schoenberg, D.J. Schlossberg,K.E. Thome

> The Joint Meeting of 5th IAEA Technical Meeting on Spherical Tori

16th International Workshop on Spherical Torus (ISTW2011)

2011 US-Japan Workshop on ST Plasma

National Institute for Fusion Science, Toki, Japan September 27-30, 2011

PEGASUS Mission: Physics of Low A \rightarrow 1

- University-scale, Low-A ST
 − R₀ ≤ 0.45 m, a ~ 0.40 m
- Physics of High I_p/I_{TF}
 - Expand operating space of the ST
 - Study high β_T plasmas as $A \rightarrow 1$
- Non-solenoidal startup
 - Point-source helicity injection
 - Helicity injection discharges couple to other current drive methods
- Peeling-mode studies
- Experimental tests of peeling-ballooning theory (ELM, ITER)

Local Plasma Current Sources + Helical Vacuum Field Give Simple DC Helicity Injection Scheme

- Current is injected into the existing helical magnetic field
- High I_{inj} & modest B \Rightarrow filaments merge into current sheet
- High I_{inj} & low B \Rightarrow current-driven B_{θ} overwhelms vacuum B_z
 - Relaxation via MHD activity to tokamak-like Taylor state w/ high toroidal current multiplication

Current filaments

Relaxed tokamak

• Technical attractiveness: can remove sources and anode after startup

DC Helicity Injection Startup on PEGASUS Utilizes Localized Washer-Gun Current Sources

- Plasma gun(s) biased relative to anode:
 - Helicity injection rate:

$$\dot{K}_{inj} = 2V_{inj}B_NA_{inj}$$

Simplified illustration of a plasma gun for helicity injection *(not to scale)*

Evolution of midplane-gun-driven plasma

PEGASUS shot #40458: two midplane guns, mild outer-PF ramp

t=21.1 ms, I_p=2-3 kA Filaments only t=28.8 ms, I_p =42 kA t=30 Driven diffuse plasma Gun

t=30.6 ms, I_p=37 kA Guns off, Decaying

Taylor Relaxation Criteria Sets the Maximum Ip for a Given Magnetic Geometry

Helicity balance in a tokamak geometry:

$$\frac{dK}{dt} = -2\int_{V} \eta \mathbf{J} \cdot \mathbf{B} \, \mathrm{d}^{3} \mathrm{x} - 2\frac{\partial \psi}{\partial t} \Psi - 2\int_{A} \Phi \mathbf{B} \cdot \mathrm{d} \mathbf{s}$$

$$I_{p} \leq \frac{A_{p}}{2\pi R_{0} \langle \eta \rangle} \left(V_{ind} + V_{eff} \right)$$

- Helicity injection can be expressed as an effective loop voltage
- I_p limit depends on the scaling of plasma confinement via the η term

Taylor relaxation of a force-free equilibrium:

$$\nabla \times B = \mu_0 J = \lambda B \qquad \implies \qquad \frac{\mu_0 I_p}{\Psi_T} \le \frac{\mu_0 I_{inj}}{2\pi R_{inj} W B_{\theta,inj}} \implies I_p \le \left[\frac{C_p}{2\pi R_{inj} \mu_0} \frac{\Psi_T I_p}{W_T} \right]$$

Assumptions:

- Driven edge current mixes uniformly in SOL
- Edge fields average to tokamak-like structure

¹ inj

A_p Plasma area

Г

- C_p Plasma circumference
- $\Psi_{\rm T}$ Plasma toroidal flux
- *w* Edge current channel width

Achieving the Maximum I_p at the Taylor Limit Requires Sufficient Helicity Injection Input Rate

 Sufficient net V-sec needed to reach Taylor relaxation limit

Experiments Confirm Relaxation Limit Scalings with I_{TF} and I_{ini}

• The relaxation limit I_p scales with:

$$I_p \propto \left[\frac{I_{TF}I_{inj}}{W}\right]^{1/2}$$

Experimental plasma current limits follow these scalings:

Slowly-evolving Gun-driven Plasmas Hand Off Most Efficiently to Ohmic Drive

- Poloidal flux generated by helicity injection is equivalent to that generated by Ohmic Drive
 - $\ I_{total} = I_{HI} + I_{OH}$
- Excessive skin current => poor coupling to OH drive
- Slowly evolving: ~ flat j(r) (black)
 - Smooth handoff to Ohmic inductive drive (j(R) profiles from external-only equilibrium reconstructions; $l_i < 0.3$)
- Rapidly evolving: ~ hollow, strong skin j(r) (red)

- Does not hand off efficiently to Ohmic drive

Initial Spectroscopy Measurements Suggest Energetic Ions

Spectroscopic T_i suggest high ion energies during reconnection period

- However, situation is much more complex if viewed toroidally
 - Need improved time-resolution and spatial scans

Several Issues to Address for a Predictive Model

- Extension to higher current, longer pulse
 - Verify limit scalings
 - Discharge evolution for long growth phase
 - Test confinement properties, especially $T_e(r,t)$
 - Helicity dissipation scaling model
- Optimal gun-electrode configuration
- Increased helicity injection rate
 - Test regime where helicity drive dominates PF induction for growth
 - Active guns vs. passive electrode approach for long-pulse growth
- Injected current source impedance model
 - What sets helicity injection rate?
- Edge j(r) measurements and $\lambda(\psi,t)$
 - Physics of ultimate relaxation limits
 - Current transport: MHD behavior
- RJF ISTW 2011 Impurity assessment and control

Gun-Electrode Geometry: PF Induction, Plasma Size, and Null Formation

- Original: array was nearly vertical (red):
 - J_{edge} width *w* scaled with # of guns
 - Maximum $I_p = 0.11$ MA.
- Aligned gun array tilt (green):
 - Maximum $I_p = 0.17$ MA.
 - 3-fold reduction in *w*., consistent with changing the projected width at midplane.
- Maximize plasma size: array moved further away from midplane (blue):
 - Maximum $I_p \sim 0.13$ MA
 - Larger startup plasma = *reduced PF induction*
 - *Poorer poloidal field null* formed by current streams = more difficult to induce relaxation to tokamak state
- Tight gun-anode geometry preferred

THE UNIVERSITY

Active Gun / Passive Electrode Assembly Points to Simpler, Higher I_p Operation

- Potential for much higher I_{inj} without need for either more plasma guns or larger guns.
- Helicity injection physics is agnostic to the exact source of the edge charge carriers.
- Passive electrodes allow arbitrary shaping:
 - Can optimize both helicity input (large cross-sectional area) *and* the Taylor limit on I_p (narrow in radial direction)

Initial Tests of Gun/Electrode Helicity Injection System Are Promising

• Operations use two steps:

- 1. Form initial tokamak-like state with minimal active arc gun
- 2. Grow to much larger I_p with passive electrodes fed by electrode charge carriers induced and moderated by tokamak edge plasma.
- First tests are promising
 - Arc current off after relaxation and formation of tokamak-like state
 - I_p rise is virtually the *same*, whether arc discharge or passive electrode provide the charge carriers

Integrated Arc Gun – Passive Electrode Experiments Begun

- New gun-electrode assembly has has extended electrode coupled to arc gun exit cathodes
 - Offers 5-times increase in helicity injection rate
- Integrated scraper limiters to protect assembly and control local edge density
 - Gas-puff control of

 $V_{bias} \sim V_{loop, effective}$

Local limiters

Local Limiters Reduce N to Negligible Levels in Well-behaved Injection Cases

- N dominant impurity with unprotected gun assembly
 - 1st estimates of impurity content via bolometer measures
 - $Z_{eff} \sim 2.2$. +/- 0.8 during injection; ≤ 1.4 after injection
 - Mainly N; n_e ~ 5 x 10¹⁸ m⁻³ to 2 x 10¹⁹ m⁻³
- Local scraper limiters much reduce N, O remains
- Bursts of N still evident with flare at BN surface
- Ohmic-only reference plasma very clean
 - Zeff ≤ 1.2

Intensity (counts) 800 No limiters 600 47344 400 200 0 3000 (counts) Scraper limiters 2000 52945 Intensity 1000 ntensity (counts) 1600 Scraper limiters 1200 BN "flare" 53469 800 400 0 OH driven 40 ntensity (counts) 52415 30 20 10 200 400 600 800 1000 1200 0 Wavelength (A) THE UNIVERSITY

Source Impedance Appears to be Governed by Sheath Physics

- Model evolving for source impedance ~ helicity injection rate
 - Predicative model requires edge density measurements
- Initiation phase: vacuum space charge limitation
 - $I_{\text{bias}} \sim V^{3/2} / d^2$
- High I_{bias} drive phase: expanding double layer sheath² - $d^2 \sim V => I_{bias} \sim V^{1/2}$

Intermittent 20 - 60 kHz n = 1 mode observed with strong edge current drive

- Bursts of n = 1 magnetic oscillations
 - Observed when plasma is coupled to edge current drive
 - Different in nature from inboard current injection experiments

The magnetic topology quickly changes with each burst of MHD activity

- Each burst typically ~ 0.1 ms
- With each burst...
 - I_i decreases $\rightarrow I_p$ increases
 - $R_0 \text{ decreases} \rightarrow \text{plasma}$
expands
 - − $B_{\phi O}$ increases → q_O increases
 - Slight drop in E_k and E_m
 - Very little change in poloidal flux at plasma edge
 - Rapid decrease in the total trapped poloidal flux

Current Drive Tools Providing Access to High Field Utilization Regime

OH only = large 2/1 modes limit I_p

HI startup = MHD quiescent

- Helicity injection startup and Ohmic sustainment provides MHD-stable profiles at $I_p/I_{TF} < 1$
- Need to extend to higher I_p , then to low I_{TF} for high I_N and high β_T as $A \approx 1$

Medium-Term Upgrades Will Allow Further Tests of Point-Source Helicity Injection

- Gun-electrode Evolution
 - Passive electrode material variations
 - C electrode being installed
 - Separate plasma gun and electrode
- Power Supplies, Heating
 - New helicity injection power: 2 kV, 15 kA
 - Double TF current: *Taylor limit increase*
 - Commission HHFW system: *electron heating*

Expanded PF Coil Set and control

- Internal coils for radial position control
- New external divertor coils
- Implement GA Plasma Control System
- Diagnostic Additions
 - Multipoint Thomson Scattering
 - High-speed $T_i(r,t)$
 - Anomalous reconnection heating

Thomson Scattering system uses new technologies for visible wavelength system

- Frequency doubled Nd:YAG laser provides ~10¹⁸ photons
- For typical PEGASUS plasma, $n_{scattered} \sim 10^4$ photons
- VPH grating efficiency >85% for $\lambda_{inc} = 532 632$ nm
- Gen III image intensifiers ~50% efficient in visible region
- ~ 6 ns ICCD gating provides easy detector technology

Laser Specifications	Value
Output Energy at 532 nm	≥ 2000 mJ
Beam diameter at head	12 mm
Beam diameter at waist	3 mm
Pointing stability	≤ 50 µrad
Divergence	≤ 0.5 mrad
Repetition Rate	≤ 10 Hz
Pulse length	≥ 10 ns

HI Conclusion: High-Ip Non-Solenoidal Startup via Point-Source Helicity Injection Looks Promising

- Significant progress with non-solenoidal startup of ST
 - $I_p \sim 0.17$ MA using helicity injection and outer-PF rampup
 - Using understanding of helicity balance and relaxation current limit to guide hardware and operational changes
 - So far, predicted scalings supported
 - Goal $\approx 0.3-0.4$ MA non-solenoidal I_p to extrapolate to next level/NSTX
 - Outstanding physics questions: $\dot{\lambda}_{edge}$, Z_{inj} , confinement, *etc*.
 - Deploying plasma diagnostics to better understand properties
- Exploration of high I_N , β_t space facilitated by j(r) tools - $I_p/I_{TF} > 2$, $I_N > 14$ achieved; extend operation to high I_p , n_e for high β_t
- Holds Promise as a Scalable Non-Inductive Startup Technique
 - Simpler injection system using plasma gun passive electrode combination may be feasible

Some Low-A ST ITER-relevance: Access to Peeling Instability and Conditions to Measure J

- Spherical tokamaks naturally provide strong peeling drive
 - Toroidal field utilization $I_p/I_{tf} \sim j_{\parallel}/B$
- PEGASUS accesses peeling modes
 - Strong j_{\parallel}/B MA/m²-T at
 - Comparable to DIII-D in H-mode
- Machine parameters permit internal edge measurements
 - Short pulse lengths (< 50 ms)
 - Modest $T_e < 200 \text{ eV}$

PEGASUS Hall Probe Deployed to Measure J

- Solid-state InSb Hall sensors
 - Sypris model SH-410
- 16 channels, 7.5 mm radial resolution

- Slim C armor as low-Z PFC
 - Minimizes plasma perturbation
- 25 kHz bandwidth

\mathbf{S} J_{ϕ}(R,t) Calculable Directly from Ampère's Law

$$\mu_0 J_\phi = (\nabla \times \mathbf{B})_\phi = \frac{\partial B_R}{\partial Z} - \frac{\partial B_Z}{\partial R}$$

- Simplest test follows from $B_R(Z)$ or $B_Z(R)$ measurements
- Petty* solves for an off-midplane B_Z(R) measurement set and an elliptical plasma cross-section:

$$\mu_0 J_{\phi} = -\frac{B_Z}{\kappa^2 \left(R - R_0\right)} \left(1 - \frac{Z^2 R_0}{\kappa^2 R \left(R - R_0\right)^2}\right) - \frac{dB_Z}{dR} \left(1 + \frac{Z^2}{\kappa^4 \left(R - R_0\right)^2}\right)$$

• Does not make assumptions on shape of J(R)

*: Petty, et al., Nucl. Fusion 42, 1124 (2002)

Direct $J_{\phi}(R)$ Profiles Obtained in PEGASUS

- Straightforward J estimation
 - Obtain Hall Probe $B_z(R,t)$
 - Compute dB_Z/dR using interpolated smoothing spline^{*}
 - Compute $J_{\phi}(R,t)$ given geometry
- Resultant $J_{\phi}(R,t)$ consistent with I_{p} , MHD evolution
- Radial span extendible with multi-shot averaging
- Higher-order shaping effects negligible within errors

Peeling MHD Strongly Scales with Theoretical Drive

- Mode helicities estimated from port 8 Mirnov array
 - n < 3 via cross-phase analysis
 - $-m_{lab} \ge 10$ via radial decay rate
 - $-10 \le m_{lab} / n \le 30 (\psi \downarrow N > 0.9)$
- MHD power spans two orders of magnitude with factor-offive variation in J/B

Stability Analysis Confirms Peeling Instability

- Analytic peeling criterion computed from Hallconstrained equilibrium indicates instability
 - More than factor of two in region of optimal $(/ \downarrow \phi)$ constraint
- Free-boundary ideal stability analysis performed with DCON
 - Indicates instability to m/n = 19/1 external kink
- Both methods agree with experiment

J_{edge} Dynamics Measured on ELM Timescales

- J_{edge} resolved during peeling filament generation
- Propagating filament forms from initial "current-hole" J_{edge} perturbation
 - Validates formation mechanism
 hypothesized by EM blob transport
 theory
- Filament carries toroidal current I_f ~ 100–220 A
 - Comparable to MAST ELM estimates
 - I_f < 0.2 % of I_p

Bongard et al., Phys. Rev. Lett. 107, 035003 (2011)

Filament Radial Motion Qualitatively Consistent with Electromagnetic Blob Transport

- Trajectory of detached filament tracked with 275 kHz imaging
 - Radially accelerates, followed by constant velocity motion
- Magnetostatic repulsion^{*} plausibly contributes to dynamics
 - Current-hole **J**×**B** drives aR
 - Transition at $\sim 35 \ \mu s$ comparable to healing time of current-hole
- Measured VR comparable to available EM blob models**
 - VR ~ 4 km/s; VR, IB ~ 8 km/s
 - Agrees to O(1) accuracy of theory

Bongard et al., Phys. Rev. Lett. 107, 035003 (2011)

**: Myra et al., Phys. Plasmas 12, 092511 (2005)

ELM

hole

image

wall

ELM

Peeling Mode / ELM Conclusions

- Direct measurements of J_{edge} conducted with Hall probe
 - Direct analysis, equilibrium reconstruction
 - J_{edge} controllable with dI_p/dt
- Characteristics of Peeling Modes Consistent with Theory
 - Macroscopic features: Low-n, high-m external kink
 - Onset consistent with ideal MHD, analytic peeling stability theories
 - Observed MHD scales with measured J/B peeling drive
 - Coherent, propagating filaments
- J_{edge} dynamics supports current-hole & EM blob hypotheses
 - Nonlinear filaments generated from current-hole J_{edge} perturbation
 - Transient magnetostatic repulsion
 - Constant- V_R propagation in agreement with available EM blob theory

HI Conclusion: High-Ip Non-Solenoidal Startup via Point-Source Helicity Injection Looks Promising

- Significant progress with non-solenoidal startup of ST
 - $I_p \sim 0.17$ MA using helicity injection and outer-PF rampup
 - Using understanding of helicity balance and relaxation current limit to guide hardware and operational changes
 - So far, predicted scalings supported
 - Goal $\approx 0.3-0.4$ MA non-solenoidal I_p to extrapolate to next level/NSTX
 - Outstanding physics questions: $\dot{\lambda}_{edge}$, Z_{inj} , confinement, *etc*.
 - Deploying plasma diagnostics to better understand properties
- Exploration of high I_N , β_t space facilitated by j(r) tools - $I_p/I_{TF} > 2$, $I_N > 14$ achieved; extend operation to high I_p , n_e for high β_t
- Holds Promise as a Scalable Non-Inductive Startup Technique
 - Simpler injection system using plasma gun passive electrode combination may be feasible

