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We have been promoting characteristic
steady state experimental devices
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What are issues to SSO?

• Non-inductive current drive

Ideally self-organized current such as BS current to
alleviate less current drive efficiency

neo-classical current in low ne at present and EBWCD
in near future on QUEST

• Heat and particle handling

Heat handling; Detached divertor, Ar and Ne injection

Particle handling; Closed divertor, Hot wall, Enhanced
pumping, Advanced fueling

• Integrated control including core plasma, PWI and wall.

Global plasma control, Turbulence control in core,
Blob control in SOL, Wall conditioning
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An example of 0-D heat balance
in a steady state plasma
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K. Hanada et. al. FED, 81, 2257-2265 (2006)

• Heat was completely balanced after about 30 min.
• Plasma termination was caused by unbalance of particle.



What happen particle balance
in steady-state?
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wall pumping
~4 x 1017 [H/m2s]

High density (ne~1019)

wall pumping

Time (min)

Gas feed

Evacuation by pump-unit

Low density (ne~1018 m-3)

wall pumping
~1.5 x 1016 [H/m2s]

Wall pumping in long pulse operation
M. Sakamoto et al., Nucl. Fusion 42 (2002) 165

• The wall pumping rate strongly depended on the
plasma parameters.

• The wall pumping was working for more than 5 hours.
• The abrupt termination of the plasma was caused by a

lost of particle balance (may be wall saturation).
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Model of 0-D Particle balance

Particle
deposition

Plasma-induced Desorption
Reflection

Plasma particle

Neutral
particle

FuelingPumping

Particle load
(ions, CX neutrals)

• Simple model for 0-D particle balance equations.
• Considered processes are illustrated on the

schematic figure.
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Thermal
Particle desorption

Ionization



0-D particle balance eq.
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Steady state will be realized more than 1000s

tW=10sec, tion=25ms, tp=10ms, nWSp=2.5x1022 (1x1021 m-2), nWSn=nWSp/12
Vvessel=35m3, Vplasma=4m3 Svessel=25m2, input=4x1018/sec, Spump=10m3/sec

QUEST
AFRC
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tW can be controlled by Twall.
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• The number of stored particles depends on the
targeted wall temperature.

• Hot wall around 673K could not have the property of
pumping.

N.Yoshida et al.

• TDS spectrum for Mo
implanted D (2keV-D+,
3x1021 D/m2) at various
temperature.
• At the high temperature
region, D does not
absorbed in the material.
• We consider the high
temp. wall works as the
reflector of the particle.
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• Impurity production

• Re-deposition, Co-deposition

• Estimation of tW, tp, tab, tion, C1, r, nWSp, nWSn

• Fusion reaction, D, T, and He balance

• 1-D model (inward pinch, density peaking, blob,
divertor)

Issues in particle balance eq.
QUEST

AFRC



QUEST
AFRC

Need to 1-D model
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QUEST QUEST
AFRC

Bt 0.25 T at R=0.64 m (CW)
PF 4 pairs
CS 3 coils
RF systems

2.45GHz 50 kW(CW)
8.2 GHz 400 kW(CW)



Present status of QUEST

13

Design Achieved

R(m) 0.68 0.7

a(m) 0.4 0.48

A 1.6 1.47

Ip kA(OH) 300 110
(Bt=0.14T)

Ip kA
(RF)

2~ 30(0.45MW)
100 (1MW)

25(60kW)

Prf (kW) 400 ~200

Bt(T) 0.25(CW) 0.25(CW)

n 4E18 <1E18

discharge SS 37 s

Non inductive current
driven plasma

R=0.7m, a=0.48m, A=1.47

QUEST
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Non-inductive current drive

• Development of hardware of microwave
heating system (presented by Prof. Idei)

• Plausible explanation of present experimental
observation

• Future plans for current drive (presented by
Prof. Idei)
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Development of QUEST status

QUEST experiments are going well as previously scheduled
and we have an opportunity to challenge for steady state
operation of spherical tokamaks.



New type phased array antenna for EBWCD
QUEST

AFRC

H. Idei et al., Journal of Plasma and Fusion Research SERIES, Vol.8 (2009), pp. 1104-1107

 Control of incident
wave polarization and
mode

 Control of incident
angle and beam
property

 Water cooling for CW
operation up to 200kW

How wave should be injected depends on the way for current
drive. This antenna will be used for EBW excitation and current
drive, X and O mode ECCD.

The details will be presented by Prof. Idei in this meeting



Steady state operationSteady state operation QUEST
AFRC

37 sec The plasma of more than
10kA, A~1.5 could be
obtained by only 8.2GHz
microwave on a limiter conf.

37 sec
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Magnetic surface and current profile
QUEST

AFRCCurrent profileMagnetic surface Current profile

The current locates between 2We and 3We. A=1.45 on EFIT
and 1.47 PCF. ST configuration was obtained.



ne0 = 2 x 1018 m-3, Te0 =100eV,
total current : 20kA

ＥＢＷＣＤ can drive? QUEST
AFRC

O-mode cutoff
ne

Time (sec)

The details will be presented by Kalinnikova-san in this meeting



No mode and N// Dep.
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• Difficult to understand how to drive the current using 1 and 2We X
and O mode ECCD and EBWCD.
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lost banana co-moving

How was the current driven?
QUEST

AFRC

• On open magnetic surface, the asymmetric orbit and the
precession of banana electrons can drive the plasma current.

• The effect is enhanced with higher energy region.
• The momentum to electron fluid is supplied by the lost electrons.

This is a kind of spontaneous current such as bootstrap current.

10keV

Lost Banana Co-moving



Direct detection of driven current
QUEST

AFRC
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Neo-classical effect can drive the current
QUEST

AFRC

• At the plasma current
start-up, a part of the
plasma current was
driven outside of last
closed flux surface.

• The current can be
explained by the
precession motion of
banana electrons
accelerated on 2We
ECR layer in open
magnetic flux.

Measured Calculated



Heat and particle handling

• Formation of Divertor conf.

• Divertor probe measurement

• Study of Blobs in ECRH plasmas



Hot spot

Port
MH02
RF

Port
MH03
HX

Port
MH04
probe

What is the reason of plasma termination?
Hot spot on the outer wall QUEST

AFRC

Hot spots mainly appeared on the outer wall, increasing PRF and
pulse duration. The plasma current was reduced by the
increment of out-gassing caused by the presence of the hot spots.
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Divertor Config. can be obtained
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Formation of divertor Conf.
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Divertor probe measurement
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Distribution of Is strongly depended on magnetic conf. and peak position of Is
agreed with position of a divertor leg measured with magnetic reconstruction.
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LCFS

SOL

Core
plasma

Fast wall

blob

Study of blobs is important to make 1-D model

NSTX

J.R.Myra and D.A.D’lppolito et al, Physics of Plasmas ,13 ,92509(2006)
J. Cheng et al., Plasma Phys. Control. Fusion, 52, 055003 (2010)

Particle flux in SOL region related to blobs is dominant . For 1-D model
of particle balance, distribution of particle flux should be investigated.
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ITER

Blobs in ECRH plasma on QUEST

RF wave
ECRH

plasma

Blobs in ECRH plasma on QUEST are belonging to low
collisional region like as ITER SOL.

Fast camera

Probe
system

Center
stack
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Statistical Analysis will be reported by Santanu-san in this meeting



Blob induced particle flux

1.6

1.2

0.8

0.4

0.0

V
E

×
B
[k

m
/s

ec
]

1.61.20.80.40.0

Vblob[km/sec]

60% of particle flux was induced by blob-related convective flux and
It should be investigated how many particles transport to the wall,
not to the divertor.
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Required conditions of the control system
for steady state operation QUEST

AFRC



New current profile reconstruction is applied.
The reconstructed plasma shapes are reliable

The details will be presented by Hasegawa-san in this meeting

QUEST
AFRC



#15244

How to monitor a plasma position
2D SXR camera

QUEST
AFRC



#15244

How to monitor a plasma position
2D SXR camera

QUEST
AFRC



Comparison of the plasma axis position
with magnetic measurement
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Required conditions of the hot wall
QUEST

AFRC



Hot wall has been designed
QUEST

AFRC

Hot wall

Heater

Cooling panel

Radiation
Shield

Vacuum Vessel

Thermal
Isolator



Modeling of plasma for heat balance calcu.

• Plasma was assumed as a
toroidal-shaped flat radiation
source.
• No heat flow to divertor

plate from plasma.
• 100kW radiation in steady

state (20 % of 500kW)

Plasma

QUEST
AFRC



An example of calculation result

360℃
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281℃
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QUEST
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When the temperature of the hot
wall surface is over 500 degree, a
part of the vacuum vessel is going
to be too high. This means some
cooling channels are required.



Two types of cooling channels are investigated
for cool-down of the vacuum vessel QUEST

AFRC

Required flow rate of water is reasonable, however workability
to install these channels is still concerns. Further investigations
are necessary.
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New developed diagnostics
Intrinsic plasma rotation with HeII images on QUEST

Top View of QUEST

CS

Fast CAM SA5

H, OII
spectrum

8.2 GHz -wave

Fast CAM SA5

Multichannel
Spectrometer

2.45 GHz Pump
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Images from both side view: Using fast camera and HeII edge and broadband filters:
1. Limiter configuration
2. Divertor configuration
3. Inboard null configuration
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September 28th: Oral presentation by Prof. Nobuhiro Nishino

QUEST
AFRC



Slab plasma – no rotation case – angular effect
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2D – velocity profiles

Correction for angular effects required

More precise corrections
necessary
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September 28th: Oral presentation by Prof. Nobuhiro Nishino



Plasma current evolution –
principal comp. analysis applied to fast camera images

 Let A denote an m  n matrix of image data, where m  n
 Equation for SVD gives:

Where U is a m  n matrix, S is a n  n diagonal matrix and VT is a n  n matrix

 The first, second and third principal components are defined by s1v1
T, s2v2

T, s3v3
T respectively

TUSVA 

September 28th: 28-3P-7 Poster presentation by Santanu Banerjee
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 On QUEST, a spherical tokamak configuration with the aspect ratio of
less than 1.5, the plasma current up to 25kA could be obtained for 1s by
fully non-inductive current drive using the well-controlled microwave of
8.2GHz, 120kW.

 The non-inductive current is driven by toroidally asymmetric orbit of
energetic electrons accelerated by the microwave.

 The plasma current was reduced by the increment of out-gassing caused
by the presence of the hot spots made by direct attack the energetic
electrons on the wall.

 The single-null divertor configuration was formed and could be
maintained for 20 sec. Ion saturation current measured on the divertor
plate surface was increasing around the divertor leg.

 The real time plasma shape control for QUEST are preparing and the
method to avoid a drift problem of magnetic signal (2D SXR) will try to
apply to identify the plasma position..
Several types of new developed diagnostics start to work.

Summary QUEST
AFRC





Particle balance in Fusion plasma

Material
damage

Impurities

Impurities
depositions

Hydrogen
recycling

Tritium
retention

Fusion reaction
Inward pinch

Blob

FuelingPumping

Particle load
(ions, neutron

CX neutrals)

• Everything has some complicated reciprocal relations and its
integrated results make or mar fusion power plants.

• Several issues come to the front in steady state operation.

QUEST
AFRC



Particle Balance
What kinds of processes are working?
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What is the matter with steady-state ?

Time (sec)
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)

wall pumping
~4 x 1017 [H/m2s]

High density (ne~1019)

wall pumping

Time (min)

Gas feed

Evacuation by pump-unit

Low density (ne~1018 m-3)

wall pumping
~1.5 x 1016 [H/m2s]

Time evolution of the total amount of gas feed and evacuation to the external pumping.

Wall pumping in long pulse operation
M. Sakamoto et al., Nucl. Fusion 42 (2002) 165

• The wall pumping depends on the plasma parameters
and it leads to be difficult to control of particle balance
in steady state. The co-deposition process plays an
essential role in the wall pumping rate.

QUEST
AFRC

Particle confinement

Wall pumping

fueling

Plasma density



Neo-classical current was enough to make CFS
QUEST

AFRC



Particle balance in chemical burning

Fueling

Ｏ２ Ｏ２

QUEST
AFRC

ＣＯ２

Automatic particle circulation can
support steady state burning in
chemical burning.
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• The plasma current more than 4kA
was almost proportional to the
number of photons 10-12keV.

• Electrons with higher energy are in
higher current than 8-10kA.
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• 1We X and O mode ECCD was impossible at low BT even under
the consideration of relativistic and Doppler effect.

• 2We X ECCD had the possibility to drive the current because of
avoidance of the cancel effect in a narrow density region.
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How was the current driven?
QUEST

AFRC



No mode and N// Dep. No BT dep.
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予測されるblobのパラメータ領域

S. I. Krasheninnikov, Phys. Plasma.,74. (2008)679
J.R.Myra and D.A.D’lppolito et al, Physics of Plasmas ,13 ,(2006)92509

他の装置で発生するblobもこの領域にあると予想され、QUEST
で観測されているblobも、同じ領域にいるのでQUESTでの研究
は、他の装置での伝搬機構解明に役立つと考えられる。
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Why wall study? QUEST
AFRC
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• QUEST is the main device for the research of
steady state operation in this framework.

Strategy of Japanese ST Research

Very long pulse
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Longer pulse,
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Broader options for approach
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Current drive
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リミタ放電とダイバータ放電とでの違い
TF current : 26.6kA
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RF-accelerated electrons can drive
plasma current QUEST

AFRC
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ダイバータプローブ破損状況

QUEST本体中心
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Asymmetric elec. orbit can drive the
current in CFS

QUEST
AFRC

• A part of high energy elec. may directly attack to the outer wall.
• The asymmetric elec. orbit can drive the current in closed flux

surface (CFS) spontaneously.



Particle Balance
What kinds of processes are working?
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Particle Balance in QUEST
Most of processes are common in various devices.
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上側ヌルと下側ヌルとでの違い
TF current : 30kA
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ECR位置での違い
TF current : 26.6kA、30kA、32.5kA Diverter
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ダイバータプローブ計測結果

上側ダイバータ位置に、R方向にプローブアレイを設置（R=270mmから15mmおきに
35チャンネル）。イオン飽和電流計測を行った。

•リミタ配位の場合とダイバータ配位の場合との違い
•（ダイバータ配位の場合）上側ヌルと下側ヌルとでの違い
•ECR位置での違い



New Concept of Phased Array Antenna
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TRIAM LHCD System

Control of Incident Polarization and Mode
—Orthomode Transducer —

Control of Incident Angle and
Beam Properties

—Phased Array Antenna—

QUEST, Advanced Fusion Research Center
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