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We have been promoting characteristic
steady state experimental devices
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What are issues to SSO? ..

AFRC

* Non-inductive current drive

e Heat and particle handling

* Integrated control including core plasma, PWI and wall.




An example of 0-D heat balance
in a steady state plasma
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* Heat was completely balanced after about 30 min.

* Plasma termination was caused by unbalance of particle.




What happen particle balance
in steady-state? QUEST

. . . AFRC
Wall pumping in long pulse operation
M. Sakamoto et al., Nucl. Fusion 42 (2002) 165
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* The wall pumping rate strongly depended on the
plasma parameters.

* The wall pumping was working for more than 5 hours.

* The abrupt termination of the plasma was caused by a
lost of particle balance (may be wall saturation).




Model of 0-D Particle balance

QUEST
AFRC

/s . Particle

== Pumping Plas

St lonization

* Simple model for 0-D particle balance equations.
* Considered processes are illustrated on the

schematic figure.




0-D particle balance eq.
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Steady state will be realized more than (211195905

AFRC
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Tw can be controlled by T,

allquesr
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. RT « TDS spectrum for Mo
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. ‘ : :
305 400500 600 700 800 e00 7000 We consider the high
Temperature[K] temp. wall works as the
N.Yoshida et al. reflector of the particle.

* The number of stored particles depends on the
targeted wall temperature.

* Hot wall around 673K could not have the property of
pumping.




Issues in particle balance eq

[ ]
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Impurity production

Re-deposition, Co-deposition

Estimation of 1y, T, Top Tions C1s 1 Nispr Nwsn
Fusion reaction, D, T, and He balance

1-D model (inward pinch, density peaking, blob,
divertor)



Need to 1-D model QUEST

|Core plasma model
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QUEST QuesT
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0.44m PFI-1)L

Bt 0.25T at R=0.64 m (CW)
PF 4 pairs
CS 3 coils
RF systems
2.45GHz 50 kW(CW)
8.2 GHz 400 kW(CW)




Present status of QUEST ...

AFRC
| [Design ____|Achieved
R(m) 0.68 0.7
a(m) 0.4 0.48
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Non-inductive current drive

QUEST

AFRC

* Development of hardware of microwave
heating system (presented by Prof. Idei)

* Plausible explanation of present experimental
observation

e Future plans for current drive (presented by
Prof. Idei)
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QUEST experiments are going well as previously scheduled
and we have an opportunity to challenge for steady state
operation of spherical tokamaks.



New type phased array antenna for EBWCD
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y’® Control of incident
wave polarization and
mode
® Control of incident

angle and beam
property

® Water cooling for CW |
operation up to 200kW 4

How wave should be injected depends on the way for current
drive. This antenna will be used for EBW excitation and current
drive, X and O mode ECCD.

The details will be presented by Prof. Idei in this meeting
H. Idei et al., Journal of Plasma and Fusion Research SERIES, Vol.8 (2009), pp. 1104-1107



Steady state operation

AFRC
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Magnetic surface and current profile
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The current locates between 2Q)e and 3Qe. A=1.45 on EFIT

and 1.47 PCF. ST configuration was obtained.



EBWCD can drive? ..
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The details will be presented by Kalinnikova-san in this meeting



Plasma Current (kA)

Wave mode, N, ,, and B; dependence
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| » Difficult to understand how to drive the current using 1 and 2Qe X

and O mode ECCD and EBWCD.




How was the current driven?
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Banana Co-moving

On open magnetic surface, the asymmetric orbit and the
precession of banana electrons can drive the plasma current.

The effect is enhanced with higher energy region.
The momentum to electron fluid is supplied by the lost electrons.
This is a kind of spontaneous current such as bootstrap current.




Direct detection of driven current
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Neo-classical effect can drive the current
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Measured

Calculated
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Magnetic
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Orbit calc

AFRC

/'« At the plasma current

start-up, a part of the
plasma current was
driven outside of last
closed flux surface.
The current can be

explained by the
precession motion of
banana electrons
accelerated on 2Qe
ECR layer in open
magnetic flux.



Heat and particle handling

e Formation of Divertor conf.
e Divertor probe measurement
e Study of Blobs in ECRH plasmas



What is the reason of plasma termination?
Hot spot on the outer wall .;

150keV
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Hot spots mainly appeared on the outer wall, increasing P, and
pulse duration. The plasma current was reduced by the
increment of out-gassing caused by the presence of the hot spots.




Divertor Config. can be obtained
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Formation of divertor Conf.
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Divertor probe measurement

UEST
#15475 AFRC
_ : . 1.0x10"
—CHI6 | s

0.05 - | He Puff Tos

z | Divertor 1% &
E[) - 04 E

402

0.0

1 2 3 4 5
Time (sec)
1.41-1.42se 1.9-2.1sec 4.4-4.5sec
0.15F 1 T T T 9 0.01F 7 T T T - T T T T
? 0.03F ﬁ -
~ 0.10 4~ -
E E } E 0.02F } H} -
= 0.05 - 1~ }%ﬁ ~omf m%:
0.00 1 1 I 0.00 1 1 1 S 0.00 =g L 1 1
04 05 0.6 07 04 05 0.6 07 04 05 0.6 07
R (m) R (m) R (m)

Distribution of Is strongly depended on magnetic conf. and peak position of Is

agreed with position of a divertor leg measured with magnetic reconstruction.




Study of blobs is important to make 1-D model
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501 SOI., 2 50’ 5 503
t(ms)

J.R.Myra and D.A.D’lppolito et al, Physics of Plasmas ,13 ,92509(2006)
J. Cheng et al., Plasma Phys. Control. Fusion, 52, 055003 (2010)

Particle flux in SOL region related to blobs is dominant . For 1-D model

of particle balance, distribution of particle flux should be investigated.
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Blobs in ECRH plasma on QUEST

High Collisionality Region
[ime 100506 15:31:11.036936 1

27’ 11
LLL

Blobs in ECRH plasma on QUEST are belonging to low
collisional region like as ITER SOL.

Statistical Analysis will be reported by Santanu-san in this meeting



Blob induced particle flux
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60% of particle flux was induced by blob-related convective flux and

It should be investigated how many particles transport to the wall,
not to the divertor.




Required conditions of the control system

QUEST

for steady state )peration

. Divertor leg P
ceal time reconstruction of plasma shape

+ Application to wall control (installation of hot waII)

Need to establish some reliable monitors;
Plasma density, neutra

| dens;
* High scalability 'ty, wall pPum pl NE ra te
than hOUrs erent tlme SCale

AFRC



New current profile reconstruction is applied.
The reconstructed plasma shapes are reliable .¢;

AFRC

The details will be presented by Hasegawa-san in this meeting



How to monitor a plasma position
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SXR camera . #15244
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How to monitor a plasma position
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SXR camera #1524
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with magnetic measurement ..
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Required conditions of the hot wall

AFRC

H pumping out,
if carbon, at least 1000K

. Less than 323 K on the surface of V.V.
For diagnostics, for window, for GV and so on

* Covered by W on the plasma-side surface at Ieast
PWI contro, application tq fusion




Hot wall has been designed
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Nix
O N
\ ‘ Heater

A Cooling panel
= ! Thermal

Isolator
Hot wall Vacuum Vessel




Modeling of plasma for heat balance calcu.
QUEST

AFRC

* Plasma was assumed as a
toroidal-shaped flat radiation
source.

* No heat flow to divertor
plate from plasma.

* 100kW radiation in steady
state (20 % of 500kW)




An example of calculation result
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When the temperature of the hot
wall surface is over 500 degree, a
part of the vacuum vessel is going
to be too high. This means some
cooling channels are required.



Two types of cooling channels are investigated

for cool-down of the vacuum vessel .,

AFRC

Required flow rate of water is reasonable, however workability
to install these channels is still concerns. Further investigations
are necessary.



New developed diagnostics

Intrinsic plasma rotation with Hell images on QUQI,EESI
AFRC

Images from both side view: Using fast camera and Hell edge and broadband filters:
1. Limiter configuration

2. Divertor configuration o®
3. Inboard null configuration i
5,
Velocity is: V=——¢C
A i’ Ratio
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Top View of QUEST

September 28™: Oral presentation by Prof. Nobuhiro Nishino




Slab plasma — no rotation case — angular effegltjEST

AFRC

14712 14713

100 100

150 150

200|
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Red shift
27% increase from minimum value;
center to edge of image

Correction for angular effects required

250!
50 250

Blue shift

68% decrease from peak value;
center to edge of image

50 250

TFC 40 kA

2D - velocity profiles

More precise corrections
necessary

September 28™: Oral presentation by Prof. Nobuhiro Nishino




Plasma current evolution —

principal comp. analysis applied to fast camera imaa%c‘eE?T

> Let A denote an m x n matrix of image data, where m>n AFRC
» Equation for SVD gives:

T
A=USV
Where U is a m x n matrix, S is a n x n diagonal matrix and V" is a n x n matrix

» The first, second and third principal components are defined by s,v,7, s,v,', s3v;T respectively
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September 28t: 28-3P-7 Poster presentation by Santanu Banerjee




Summary aus

AFRC

® On QUEST, a spherical tokamak configuration with the aspect ratio of
less than 1.5, the plasma current up to 25kA could be obtained for 1s by
fully non-inductive current drive using the well-controlled microwave of
8.2GHz, 120kW.
® The non-inductive current is driven by toroidally asymmetric orbit of
energetic electrons accelerated by the microwave.
® The plasma current was reduced by the increment of out-gassing caused
by the presence of the hot spots made by direct attack the energetic
electrons on the wall.
® The single-null divertor configuration was formed and could be
maintained for 20 sec. Ion saturation current measured on the divertor
plate surface was increasing around the divertor leg.
® The real time plasma shape control for QUEST are preparing and the
method to avoid a drift problem of magnetic signal (2D SXR) will try to
apply to identify the plasma position..
®Several types of new developed diagnostics start to work.






Particle balance in Fusion plasma
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* Everything has some complicated reciprocal relations and its
integrated results make or mar fusion power plants.
 Several issues come to the front in steady state operation.




Particle Balance
What kinds of processes are working?

s

NBI, Compact Toroid ‘ Gas puff
Pellet
L
Blob, " i Gas puff,
lELM ecycling NBI, Pellet

Co re

Divertor

Retention



What is the matter with steady-state ?
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Wall pumping in long pulse operation
M. Sakamoto et al., Nucl. Fusion 42 (2002) 165

(n,~10%%)

Low density

Particle confinement

'

Plasma density

Wall pumping

N

Total amount of
H atoms supplied (102° H)

e

0 10 20 30 )25 30 35 40

(sec)

Time evolution of the yumping.

The wall pumping depends on the plasma parameters
and it leads to be difficult to control of particle balance

in steady state. The co-deposition process plays an
essential role in the wall pumping rate.




Neo-classical current was enough to make CFS
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Particle balance in chemical burning
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co,

i}

0, (T30,

Automatic particle circulation can Fueling

support steady state burning in
chemical burning.




Properties of non—inductive current

drive plasmas QuEST
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How was the current driven?
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'+ 1Qe X and O mode ECCD was impossible at low B even under
the consideration of relativistic and Doppler effect.

* 2Qe X ECCD had the possibility to drive the current because of
avoidance of the cancel effect in a narrow density region.
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Why wall study? quest
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Wall store the number of particle (1x10%%) before the plasma turns on.

When this situation occurs in real experiments, the plasma do not turn on.



Strategy of Japanese ST,Research
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 QUEST 1s the main device for the research of
steady state operation in this framework.
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RF-accelerated electrons can drive
plasma current QUEST
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energetic electrons makes net
plasma current.
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Asymmetric elec. orbit can drive the
current in CFS
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Particle Balance
What kinds of processes are working?
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Particle Balance in QUEST

Most of processes are common in various devices.
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TF current / 26.6kA
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New Concept of Phased
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Development of Phased Array Antenna

QUEST, Advanced Fusion Research Center — wmm
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