Development of Electron Cyclotron / Bernstein Wave Heating and Current Drive System and its Application to the QUEST Experiments

QUEST Advanced Fusion Research Center

H. Idei^a, H. Zushi^a, K. Hanada^a, K. Nakamura^a, A. Fujisawa^a, M. Hasegawa^a, N. Yoshida^a, M. Sakamoto^b, H. Watanebe^a, K. Tokunaga^a, Y. Nagashima^a, A. Ejiri^c, M. Sakaguchi^d,
E. Kalinnikova^d, M. Ishiguro^d, S. Tashima^d, A. Fukuyama^e H. Igami^f, S. Kubo^f, S.K. Sharma^d,
T. Ryokai^d, H.Q. Liu^d, M. Isobe^f, K. Nagaoka^f, H. Nakanishi^f, N. Nishino^g, S. Kawasaki^a,
H. Nakashima^a A. Higashijima^a, Y. Takase^c, T. Maekawa^h, O. Mitaraiⁱ, M. Kikuchi^j and K. Toi^f

^aResearch Institute for Fusion Science, Kasuga, 816-8580, Japan,
 ^bPlasma Research Center, Tsukuba Univ., Tsukuba, , 305-8577, Japan
 ^cDepartment of Complexity Sci. and Eng., Univ. of Tokyo, 277-8561, Kashiwa, Japan
 ^dInterdisciplinary Grad. School of Eng. Sci., Kyushu Univ., Kasuga, 816-8580, Japan
 ^eDepartment of Nuclear Engineering, Kyoto Univ., Kyoto, 606-8501, Japan
 ^fNational Institute for Fusion Science, Toki, 509-5292, Japan
 ^gMechanical System Engineering, Hiroshima Univ., Hiroshima, 739-8527, Japan
 ^hGraduate School of Energy Science, Kyoto Univ., Kyoto, 606-8501, Japan
 ⁱInst. of Ind. Sci. and Tech. Research, Tokai Univ., Kumamoto, 862-8652, Japan

Outline

QUEST Advanced Fusion Research Center

- Introduction
 - OXB Mode Conversion -
- Antenna System Development
 - Conceptual Design -
 - Prototype Antenna [ISTW 2007]
 - [4 x 2] CW Antenna –
 - [4 x 4] CW Antenna –
- Ray Tracing Analysis [OXB scenario]
 - Non-optimum Case -
 - Multiple Ray Tracing -> Antenna Setup -
- Non-inductive Plasma Current Startup and Sustainment
- Future Plan (High Density Operation with High Power RF)
- (Preliminary) High Power Antenna Test

Conceptual Design [Phased-array Antenna System]

Radiation Field Profiles from Prototype Antenna

QUEST Advanced Fusion Research Center

CW [4x4] Antenna Development

<u>Multiple Ray Tracing Analysis</u> <u>including non-optimum cases</u>

[with E. Kalinnikova]

Change of $N_{//}$ sign along propagation

In the electrostatic B-wave, N_{θ} or k_{θ} contribution was dominant in the N// evolution not near the mid-plane of the torus.

Phase and Group Velocity Evolutions of EBW

Poloidal N_{θ} near UHR

$$N_{\theta} = -\frac{Z}{r} \frac{Y^2}{R} \frac{1}{\sqrt{\left(X_0 \frac{r}{a^2} + Y^2 \frac{\cos \theta}{R}\right)^2 + Y^4 \frac{\sin^2 \theta}{R^2}}}$$

$$X_0 = \frac{\omega_{p0}^2}{\omega^2}, \, \omega_p^2 = \omega_{p0}^2 \left(1 - \frac{r^2}{a^2}\right)$$
$$Y = \frac{\Omega}{\omega}$$

QUEST Advanced Fusion Research Center

BWD Wave

T. Maekawa et al., Phy. Rev. Lett. 86, 3783 (2001).

$$\frac{\partial D}{\partial \omega} = -\frac{4X}{\mu^4} \frac{1}{N^2 N_{||}^2} \frac{1}{\omega} \left(\frac{N_{||}^2 \mu^2}{2} - \frac{N^2 N_{||}^2 \mu^4}{4X} + 1 + F^{(1)} \right)$$

$$\frac{\partial D}{\partial k_r} = \frac{c}{\omega} \frac{2N_r}{N^2} \left(1 + \frac{\mu^2 N^2}{2Y^2} + \frac{X}{Y^2 N_{||} \mu} G^{(0)} + \frac{X}{Y^2} \right)$$

Group Velocity
in electrostatic approximation
[to be published, E. Kalinnikova]

$$\frac{\partial D}{\partial k_{\phi}} = \frac{c}{\omega} \frac{2N_{\phi}}{N^2} + \frac{2X}{\mu^2} \frac{1}{N^2} \frac{c}{\omega} \left[\left(1 + \frac{N^2 \mu^2}{2X} \right) \left(\frac{B_{\phi}}{B} \frac{1}{N_{||}} + \frac{\mu^2}{2Y^2} R_{N\phi} \right) + \frac{B_{\phi}}{B} \frac{2}{\mu N_{||}^2} \left(F^{(2)} + K^{(1)} \right) + R_{N\phi} \frac{\mu}{2N_{||}Y^2} G^{(0)} \right] \right]$$

$$\frac{\partial D}{\partial k_{\theta}} = \frac{c}{\omega} \frac{2N_{\theta}}{N^2} + \frac{2X}{\mu^2} \frac{1}{N^2} \frac{c}{\omega} \left[\left(1 + \frac{N^2 \mu^2}{2X} \right) \left(\frac{B_{\theta}}{B} \frac{1}{N_{||}} + \frac{\mu^2}{2Y^2} R_{N\theta} \right) + \frac{B_{\theta}}{B} \frac{2}{\mu N_{||}^2} \left(F^{(2)} + K^{(1)} \right) + R_{N\theta} \frac{\mu}{2N_{||}Y^2} G^{(0)} \right]$$

QUEST Experiments:

Non-inductive Plasma Current Startup and Sustainment

Non-inductive current startup and sustainment [$I_p \sim 12$ kA]

- The vertical magnetic field B_z with two pairs of the poloidal magnetic coils (PFC1-7/2-6) was ramped up to about 3 mT.
- The plasma current was ramped up along the B_z evolution, but the discharge was terminated due to the recycling enhancement or the increment of the Ha intensity.

Future Plan [2012-]

High Density Operation with High Power RF

[2011] Future Plan for High Density Operation with High Power RF

HV Power Supply for 170 GHz Gyrotron in TRIAM-1M tokamak is available for the Klystron. [70kV • 25A]

[2011-12] Future Plan for High Density Operation with High Frequency [28GHz]

- 1) 1st : 8.2/8.5GHz: production 2) 2nd : 28 GHz : density ramp-up
- 3) 1st : 8.2/8.5 GHz : EBWCD

QUEST Advanced Fusion Research Center

Gyrtron, MOU, (Magnet) [from Tsukuba Univ.] (Magnet), Mitre-bend [from NIFS] G Tank, Power Supply, Transmission [Kyushu Univ.]

Installation of Antenna System to QUEST

High Power Test of Antenna Performance

Sumary

QUEST Advanced Fusion Research Center

The phased-array antenna system for Electron Cyclotron/Bernstein Wave Heating and Current Drive experiments has been developed in the QUEST. The antenna was designed to excite a pure O-mode wave in the oblique injection for the O-X-B mode conversion experiments, and its good performances were confirmed at a low power level.

The plasma current (< ~15kA) with an aspect ratio of 1.5 was started up and sustained by only RF injection in the low-density operations. The long pulse discharge of 10 kA was also attained for 37 s.

The new density window to sustain the plasma current was observed in the high-density plasmas. The single-null divertor configuration with the high plasma current (<~25kA) was attained in the 17 s plasma sustainment.

The high power antenna test has been begun in the QUEST. The absorber system will be installed to demonstrate the plasma absorption in the high power test.