

Supported by

Energy Confinement Enhancement and Pedestal Growth Triggered by an ELM in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis** UC Irvine UCLA UCSD **U** Colorado **U Maryland U** Rochester **U** Washington **U Wisconsin**

Rajesh Maingi,

J.E. Menard, R.E. Bell, J.M. Canik, S.P. Gerhardt, S.M. Kaye, B.P. LeBlanc, T.H. Osborne, A. Diallo, E.D. Fredrickson, K.C. Lee, J.-K. Park, M. Podesta, S.A. Sabbagh, D.R. Smith,

and the NSTX Research Team

16th International Workshop on Spherical Torus NIFS, Toki, Japan Sept. 27-30, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

Confinement and Pedestal Temperature Enhancement Triggered by an ELM: the Enhanced Pedestal H-mode

- Energy confinement in NSTX H-modes is generally 0.7-1.1* ITER98y2 scaling
 - H_{98y2} is ~ 0.7-0.9 without lithium, 1.0-1.1 with lithium
 - A few next step ST designs based on ~ 50% higher τ_{E}
- An improved confinement scenario with enhanced pedestal T_e,
 - T_i in H-mode observed several few years ago
 - Triggered by large ELM, either naturally occurring or triggered with pulsed n=3 fields
 - Local v_{ϕ} drag near edge, leading to high E_r shear
 - Highest normalized τ_E in NSTX, with $H_{89P} \le 3.5$ and $H_{98y2} \le 1.7$ when combined with lithium operation
 - Pulse length up to 300 msec (\sim 3 $\tau_{E})$
 - Density ramp arrested; possibly due to enhanced turbulence

• Discharge characteristics and profile changes

Changes to edge turbulence

• Prospect for reliable triggering, extension, and discussion

3

Long pulse EPH-mode phase observed for up to ~ **300 msec (~ 3 τ_F)**

16th ISTW, NIFS, Japan: EP H-mode (Maingi)

- I_p = 0.9 MA, $P_{NBI} = 3.8 \text{ MW}$
- Nearly flat n_e

- • $\tau_{\rm F} \ge 80$ msec for 225 msec
- $H_{98v2} \le 1.7$
- Natural ELM trigger for EPH

Maingi, PRL 2010 Maingi, JNM 2009

Thermal barrier: Edge T_e , T_i double, with a reduction in the edge n_e gradient, and an increase in v_{ϕ} shear

Thermal and angular momentum transport reduced in outer half of plasma

16th ISTW, NIFS, Japan: EP H-mode (Maingi)

6

Radial shear in V_{ϕ} profile correlated with large region of E_r shear during EP H-mode

Radial shear in V_{ϕ} profile correlated with large region of E_r shear during EP H-mode

9

• Discharge characteristics and profile changes

Changes to edge turbulence

• Prospect for reliable triggering, extension, and discussion

Turbulence from interferometry drops after EP Hmode transition, similar to drop after L-H transition

Magnetic fluctuations increase after EP H-mode transition - cause dN/dt reduction?

Magnetic fluctuations increase after EP H-mode transition - cause dN/dt reduction?

Common feature: magnetic fluctuations increase after EP H-mode transition

• Discharge characteristics and profile changes

Changes to edge turbulence

• Prospect for reliable triggering, extension, and discussion

3D fields used for ELM pace-making can trigger EP H after 3D fields switched off

Reproducible access to EP H-modes observed in high I_{p} discharges, but duration < τ_{E}

17

EP H-modes with sharp pedestal correlated with v_{ϕ} locked to zero near q=3 surface

D NSTX

Sept. 27-30, 2011 18

High β_{pol} results in high bootstrap and non-inductive fraction (f_{NI} ~ 0.65 from TRANSP)

CAK RIDGE

Comparisons with other enhanced confinement regimes

- Similarities and differences with VH-mode
 - ✓ Very large spatial region of high E X B shear
 - \checkmark Comparable $\tau_{\rm E}$ enhancement with respect to scalings
 - Low recycling ELM-free scenario, with relatively low impurity accumulation
 - X EP H-mode triggered by an ELM
 - X EP H-mode often initiated with localized drag on v_{ϕ} (often @q=3)
- Comparison with QH-mode
 - Higher H-factor in EP H-mode
 - Turbulence does increase, but Edge Harmonic Oscillation (EHO) rare
- Comparison with I-mode
 - Both have enhanced thermal confinement but not enhanced particle confinement, and enhanced fluctuations
 - Access different: EP H transitions from H-mode, not L-mode
 - H98 up to 100% higher in EP H-mode

Many outstanding question on EP H-mode

- Where and by how much does the turbulence change?
- Does lithium enable these in some way?
 - EP H is more frequent in past few years with increasing lithium usage
- What is the role of edge resonances?
 - q=3 special?
- Is EP H-mode some combination of VH-mode and QH-mode?
 - On occasion, Edge Harmonic Oscillation observed
- What is the limit on achievable 'pedestal width'?
 - Should we be calling this a pedestal even?
- Does shrinking of the plasma boundary play a role?
- How can we reliably trigger on demand? Can we extend?
 - RMP with proper spectrum? Low q_{95} ?

The EP H-mode has an improved thermal barrier above Hmode, without an enhancement of particle confinement

- A second transition to enhanced confinement and high pedestal T_e , $T_i \le 950 \text{ eV}$
 - Second transition after large natural or triggered ELM
 - $H_{98y2} \le 1.7$, in an ELM-free regime
- Common feature: edge v_{ϕ} develops large gradient due to a large drag, often near the q=3 surface
 - Velocity minimum corresponds to center of T_i barrier
 - Large spatial region of high E_r shear
- Low loop voltage, high β_{N} (due partly to low pressure peaking factor)
 - ✓ high performance, long pulse candidate (β_N feedback)

Long pulse EPH – density still evolving slowly, Z_{eff} rising, but P_{rad} seems reasonable

16th ISTW, NIFS, Japan: EP H-mode (Maingi)

EPH-mode phases up to several hundred msec observed recently (more common with lithium?)

25

High β_N phase maintained for 2 τ_E

EP H-mode phases may occur naturally in recovery period following 3-D fields applied for ELM triggers

