First results of global mesoscale electromagnetic turbulence simulations in MAST K G McClements¹, M Romanelli¹, P J Knight¹, A Thyagaraja² ¹ EURATOM/CCFE Fusion Association, UK ² University of Bristol, UK Acknowledgments to T D Edwards, J Hein (University of Edinburgh)

16th International Spherical Torus Workshop, Toki, Japan, September 29 2011

SUSHAM CONTRES

Introduction

- Computational models of tokamak plasma transport must resolve length scale of turbulence *L*, which is typically of order ρ_i (ion Larmor radius) or less
- □ Hot spherical tokamak (ST) plasmas such as MAST have high normalised Larmor radius ⇒ relatively straightforward to perform global fluid simulations on confinement timescales
- \Box Microturbulence on sub- ρ_i scale in MAST has been modelled using gyrokinetic approach¹
- □ First global mesoscale (*L* ~ *ρ_i* → system size) electromagnetic turbulence simulations of MAST have been performed using new two-fluid code CENTORI (Culham Emulator of Numerical TORI)²
- □ CENTORI **is successor to** CUTIE:
 - > two-fluid electromagnetic turbulence code based on periodic cylinder model
 - > restricted to large aspect ratio plasmas with circular cross-section
 - shown to reproduce LH transition via control of particle fuelling in COMPASS-D³
- CENTORI applicable to tokamak plasmas with arbitrary R/a & high β ; intended to be used for simulation of global turbulence on confinement timescales in conventional tokamaks (including JET & ITER) as well as STs
- ¹ Roach *et al.* PP&CF **51**, 124020 (2009)
- ² Knight *et al.* Comput. Phys. Comm., submitted (2011; arXiv:1109.173)
- ³ Thyagaraja *et al.* Phys. Plasmas **17**, 042507 (2010)

SUSHAN CONTRES

CENTORI coordinate system

- GRASS (GRAd-Shafranov Solver), a subroutine of CENTORI, is used to co-evolve equilibrium poloidal flux Ψ
- □ Equilibrium used to define quasi-orthogonal plasma coordinates (ρ, θ, ζ) with $\rho \propto \Psi$, $\rho \in [0,1], \nabla \rho \cdot \nabla \theta \neq 0$ in general; Jacobian from laboratory to plasma coordinates taken to be flux function:

 $\boldsymbol{J} \equiv \nabla \boldsymbol{\zeta} \cdot (\nabla \boldsymbol{\rho} \times \nabla \boldsymbol{\theta}) = \boldsymbol{J}(\boldsymbol{\Psi})$

- generalisation of Hamada coordinates:¹ speeds up vector operations & evaluation of flux surface averages

C C C C C (toroidal) direction

¹ Hamada Nucl. Fusion **2**, 23 (1962)

3

CENTORI two-fluid model

Solution of equations in CENTORI

- □ At present only ζ component of **A** (=- Ψ) is evolved; resistivity in induction equation assumed to be neoclassical
- □ Energy equations have conductivities that include neoclassical & electromagnetic turbulence terms; latter are linear functions of δW^2 (enstrophy) & δJ^2
 - turbulent diffusion terms model effect of fluctuations on subgrid scales (cf. large-eddy simulations in meteorology¹)
- □ Similar diffusivities used in continuity & momentum equations
- At present particle, momentum & heating sources are specified flux functions, rather than taken directly from experiment
- **D**erivatives in all coordinates (ρ, θ, ζ) & time approximated by finite differences
 - solution method entirely non-spectral
 - > parallelisation of code is then straightforward²

¹ Lesieur et al. Large-Eddy Simulations of Turbulence, Cambridge University Press (2005)

² Knight et al. Comput. Phys. Comm., submitted (2011; arXiv:1109.173)

5

CENTORI equilibrium

- GRASS subroutine of CENTORI is freeboundary Grad-Shafranov solver: takes into account currents in poloidal field coils
- Currently only simplest form of Grad-Shafranov equation, applicable when flows are subsonic, is used:

$$R\frac{\partial}{\partial R}\left(\frac{1}{R}\frac{\partial\Psi}{\partial R}\right) + \frac{\partial^{2}\Psi}{\partial Z^{2}} = -4\pi R^{2}\rho' - FF'$$

where $F = RB_{\phi}$

Grad-Shafranov equation solved numerically by Fourier analysing in Z & computing "steady-state" solutions of onedimensional diffusion equation with pseudo-time derivative

MAST-like equilibrium computed using GRASS

CENTORI simulations of MAST

❑ L-mode MAST-like plasma simulated using CENTORI for ~20ms (~ typical energy confinement time):

 $R \approx 0.9$ m, $a \approx 0.65$ m, $B_{\varphi} \approx 0.5$ T,

- $I_p \approx 1$ MA, auxiliary power = 2.8MW
- After 20ms equilibrium profiles appear to be approaching steady state
- □ In MAST auxiliary heating & momentum drive are provided by two neutral beams; simulated profiles (S_{i+e,aux} & S_v) assumed to be identical & centrally-peaked
- Ohmic heating power << S_{i+e,aux} except close to edge

- □ Feedback mechanism used to control volume-averaged density; fuelling rate (S_p) peaks close to edge
- Typically 129×65×65 grid points in (ρ, θ,ζ) domain; 1ms of plasma evolution can be simulated using 256 MPI processes in ~12 hours

Electron density fluctuations (1)

total electron density (10.19 /m3) t = $2.134E+01\ ms$ zeta = 0.000E+00

- □ In simulation high *m* electromagnetic mode occurs in plasma core (q < 1, but no sawtooth crash occurs within simulated time)
- Fluctuation results will be used to generate synthetic beam emission spectroscopy (BES) data for comparison with MAST measurements (cf. Brian Lloyd's talk at this conference)

SUSTAN EXERTED Electron density fluctuations (2)

Ken McClements - ISTW2011

September 29 2011

Particle transport

- □ In simulation strongly turbulent particle transport ($D \sim 60-70 \text{ m}^2\text{s}^{-1}$) occurs in conjunction with electromagnetic mode close to axis (r/a < 0.1)
- Transport falls to ~ neoclassical level at r/a ~ 0.1-0.2
- Close to plasma edge, diffusivity is up to 10² times higher on low field side than on high field side
 - turbulence close to edge strongly-ballooning in character

normalised minor radius

參CCFE

SULHAM CENTRE

Energy transport

- Simulated conductivity profiles similar to those of particle diffusivity; $\chi_e \& \chi_i$ close to plasma edge significantly lower on high field side
- □ Experimentally, $\chi_e \ge \chi_i$ in L-mode MAST plasmas with χ_i exceeding neoclassical levels¹ unless internal transport barriers are present²
- **D** Profiles & absolute values of $\chi_e \& \chi_i$ broadly similar to experiment

Temperature profiles

CCFE

Toroidal velocity profile

CCFE

- Animation shows simulated flux surface-averaged toroidal velocity profile
- Edge fluctuation correlated with GAM discussed previously
- At high radius v_φ < 0 (counter-current direction), despite co-current momentum deposition
 - may be due to turbulent stresses (cf. toroidal flows in Ohmic JET plasmas¹)
- Profile broadly consistent with MAST data; counter-current flows are not normally observed when beam injection is co-current, but profile has not yet reached steady state

14

Conclusions

- First mesoscale simulation of electromagnetic, nonlinearly-saturated turbulence & transport in spherical tokamak plasma (MAST) has been performed using new two-fluid global plasma turbulence code (CENTORI)
- Simulation of L-mode plasma over timescale ~ energy confinement time includes self-consistent co-evolution of:
 - mesoscale turbulence
 - > density, ion & electron temperature, current & flow profiles
 - > free-boundary equilibrium, taking into account X-points & external coils
- Geodesic acoustic mode (GAM) seen in simulation at top & bottom of plasma, in broad agreement with theoretical predictions in large aspect ratio limit; GAMs also identified in MAST experimental data
- Diffusive transport coefficients approximately neoclassical close to core (~1 m²s⁻¹) & highly turbulent at edge, particularly on low field side (~ 10² m²s⁻¹), reflecting strongly ballooning character of turbulence close to edge
- □ In simulation $T_i > T_e$, in broad agreement with MAST experimental data
- Simulation provides proof-of-principle demonstration that mesoscale spherical tokamak turbulence & associated transport can be practically modelled using electromagnetic fluid codes such as CENTORI