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Tutorial

Fusion Power Plant

• Fusion reaction (D+T) in a high temperature plasma (10keV) makes fast
neutron (14MeV) and fast He ion (3.5MeV).

• Neutron energy is transferred to thermal energy to produce electricity

• Reaction of neutrons with Be and Li generates T again.
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Contents

I. Why we consider ST as a fusion reactor.

Major Issues to realize a fusion reactor:

1.Plasma confinement

2.Steady state

• High bootstrap fraction (fBS>80%)

3.Neutron damage

• Neutron damage used to be the weakest point of fusion reactor.

4.Cost

• ITER costs 15 B$, while a fission reactor costs 3-5 B$.

II. Conceptual design of superconducting ST reactor
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I. Why we consider ST as a fusion
reactor.

1. Steady state

2. High beta

3. Neutron damage
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Steady State Tokamak with ITB
and 90% BS current fraction.

• Non-inductive current start up in JT-60U
simulate the steady state tokamak, as no
OH current remains.

6

S. Shiraiwa, et al.: “Formation of Advanced Tokamak Plasmas without
the Use of an Ohmic-Heating Solenoid”, PRL92, 035001 (2004).Non-inductive current start up in JT-60U

ITB Current hole
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ST can be stable at 99% BS
fraction.
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R. Miller, et al., “Stable equilibria for bootstrap-current-driven
low aspect ratio tokamaks”, Phys. Plasmas 4, 1062 (1997).

• ST configuration (hollow current profile) is consistent with the high
BS current plasma.
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High bootstrap current can be
obtained in ST.
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• In high beta plasma (ST), the BS current can be high enough.
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Neutron damage problem can be
solved in ST.
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• Total (time integrated) neutron
flux < 10 MW-year/m2.

– Life time of the first wall is 2-3
years, if the neutron wall load is
3-5 MW/m2.

• Easy replacement of blanket
module solves the neutron
damage problem.

• The wide separation between
TF return coils in ST enables
the quick replacement of the
blanket cassette.

• Large port is a weak point to
support TF coils.
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Can ST be a reactor?

Strong points
1. Low cost

– High beta

2. Quick replacement of
neutron damaged wall

3. Steady state

– High BS fraction

Weak (Questionable) points
1.Neutron flux in the inboard side?

2.No space to protect CS?

3.No superconducting magnet?

4.No space for OH solenoid?

5.Weak structure due to big port for
the wall replacement.

6.How about heat flux?
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The neutron flux is similar in any
aspect ratio.

• Some misunderstand that neutron accumulate to the center stack.

• However, neutron flux is similar both in inboard and outboard sides.
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Blanket (80cm thick) protects super
conductor.

• Thickness of the most effective neutron shield (V-VH2/W cooled by
lithium) is 58 cm.

T. Nishitani, et al., “Neutronics design of the low aspect
ratio tokamak reactor, VECTOR”, FED 81, 1245 (2006).

M. Yamauchi, T. Nishitani, S. Nishio, “Neutron Shielding
and Blanket Neutronics Design”, J. Plasma Fus. Res.
80, 952 (2004)
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II. Conceptual design of
superconducting ST reactor

1. Plasma Model

2. Equilibrium

3. Magnetic Field

4. Radial build

5. Superconducting Magnet

6. Diverter, Fueling and Exhausting

7. Blanket (Primitive)

Dec. 3, 2004 ST研究会 13
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Assumptions to design the ST reactor

1. Box type ITB

2. ITER scaling (IPB98y2) with the improvement factor, gHH

3. High aspect ratio approximation for the BS current

4. Lin Liu-Stambaugh’s beta limit

Here, βN0=10，c0=-0.7748，c1=1.2869，c2=-0.2921，c3=0.0197，d0=1.8524，d1=0.2319，m=0.6163，n=0.5523

5. Ellipticity scaling:

6. Ejima-Wesley, CE-W=0.4

7. Particle confinement time: tp=4tE

A=1.8, k=2.5, bN=7.2

2011/9/30 ISTW2011, NIFS, Japan, Sept. 27-30, 2011 14

 2 3 0 1
0 0 1 2 3

1
cothN N m n

d d
c c c c

A A


    

 
     

 

31
A

  

1.97 0.58 0.78 0.15 0.93 0.41 0.19 0.690.0562E HH t pR A B I n M P    



JUST

Design parameters are calculated
with the 0D transport code.
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Steady state solution of 0-D equations
with fueling rate.
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The beta limit determine the machine
parameters for ST reactor
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• From Lin Liu-Stambaugh’s beta limit and the ellipticity scaling

Here, βN0=10，c0=-0.7748，c1=1.2869，c2=-0.2921，c3=0.0197，d0=1.8524，d1=0.2319，m=0.6163，n=0.5523

• We assume R/a=4.5/2.5m, B=2.3T, k=2.5, HH=1.8 bN=7.2.

Lin Liu-Stambaugh’s beta limit
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Plasma parameters for ST reactor
(R/a=4.5/2.5m, B=2.3T)
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R/a 4.5/2.5 (m)

k/d 2.5/0.35

Bt0/Bcoil 2.36/12.7 (T)

UTF 24 (GJ)

jcoil 24 (MA/m2)

FOH 20 (V-sec)

IBS/IOH 18/7 (MA)

Te0/Ti0 15/15 (keV)

ne0 17 (1019m-3)

ne/nGW 1.5

bt/bN 0.22/7.2

tE/tp 2.7/11 (sec)

Neutron flux 4.4 (MW/m2)

Pf/Pa 2.4/0.5 (GW)
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Superconducting ST reactor
JUST (Japanese Universities’ Super Tokamak reactor)

Calculated with TOSCA code
(by Toshiba)
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Magnetic Field
calculated with Biot-

Savart law

• Magnetic energy:

– TF: 24GJ

– PF: 36 GJ
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Coil items current (unit)

TF coil current 53 (MA-T)

OH solenoid current 6.5 (MA-T)

PF1 21.7 (MA-T)

PF2 3.683 (MA-T)

PF3 -7.296 (MA-T)

PF4 -7.299 (MA-T)

PF5 1.666 (MA-T)

PF6 -3.331 (MA-T)

PF7 50.83 (MA-T)

PF8 43.74 (MA-T)

PF9 0.079 (MA-T)
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From ripple, NTF=12
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• The TF ripple should be less than 2% in order to reduce the heat load due to
alpha particle.

• This condition gives the number of TF return coils as NTF=12.
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Top View (1/12 section)
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(unit: cm)
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Superconducting Center Stack

• TF coil is made of double-pan-cake superconductor on a radial plat.

• Center solenoid is wound over the TF core.

• CS is separated by 10 cm thermal shield from the 80cm thick blanket.
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How to wind the center (OH)
solenoid

• Winding strain

– ε=0.6% if R0=84cm, d=1cm

• Nb3Al is a good superconductor.
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TF Coil Support.

• Large port abandons standard TF coil
support, such as compression plate between
TF return coil

• Shear stress (t)

Second polar moment of inertia = 0.1 [Mm4]

• Support parameters

– wTF=1.6 [m], dTF=2 [m]

– t= 60 [MPa]

– Strain: 0.3 mm

• The torque can be supported.
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Heat load on the diverter plate is
one of the most serious problems.

• No solid material can
receive the heat load
on the diverter plate

– 200 MW/m2

• Solutions

– Detachment

– Liquid diverter plate

(Li, Ga, Sn)

2011/9/30 ISTW2011, NIFS, Japan, Sept. 27-30, 2011 27

J. Wesson: “Tokamaks 3rd ed”, Oxford
Science Publishing (2004), p.710.
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Diverter
Heat load is received by the liquid diverter plate

and detachment plasma.

• Heat load

– Area of diverter plate (A=2pRw)

– R=5 m, w=0.03m then A=0.9 m2

– 50% of alpha heating = 270 MW.

– Heat flux = 300 [MW/m2]

• Liquid Diverter plate

– Li (Hydride)

– LiSn (Effect to Plasma)

• Detachment

– V-shape diverter target limits the volume
and makes high density diverter plasma.

– Large area (100 m2: w=1.5 [m])

• Intense development is required!
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Fueling and Exhausting

• Fueling

– Fueling rate (D+T): 13 (1021atoms/sec); Burning rate: 1.7 (1021atoms/sec)

– Ice pellet injection (Core: 30cc)

• Puffed gas cannot pass through the SOL

• Exhaust gas
– Assume fueling efficiency of 10%

– 6 (1022molecules/sec)=0.1 (mol), which is 220 (Pa-m3/sec)

• Evacuation pump
– Conduction of 12 ports (D=2 m, L=6m)

2000 (m3/sec) (molecular flow)

2000 (m3/sec) (viscous flow)

 Pressure at diverter chamber is 0.11 (Pa)

– High compression rate of diverter leg is necessary.
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Blanket (primitive)
T-Breeder: (Be+Li)/V, Shield: F82H(W)+H2O

• Neutron breeding by Beryllium (Tmelt=1560K)
9Be+n→8Be+2n (En>2.7MeV)
9Be+n→6He+4He (En>1.4MeV)
8Be→2 4He (T1/2=0.067 fsec)
6He→6Li+b (T1/2=0.808 sec)

• Tritium breeding by Lithium (Tmelt=454K)
6Li+n→T+4He+4.8MeV (940barn)
7Li+n→T+4He+n-2.5MeV (En>2.8MeV; 0.355barn)

• Strong point

– High breeding ratio

– High cooling rate for neutron power (4.5 MW/m2)

– Free from melt down in the case of power off

• Needs

– Insulator coating inside the pipe of lithium fluid

– T separation from lithium
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Comparison of fusion and fission
reactors
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37m

31m

• Size of fusion reactor (JUST:
850MWe) is not much bigger than a
fission reactor (GE MARK-I:
840MWe).

GE MARK-I
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CONCLUSION

ST can be a fusion power reactor.

Issues ST status

Plasma confinement ITB (need proof)

Disruption control Margin in b and q-value (need proof)

Steady state High BS current (need proof)

Cost High b (need proof)

Superconducting
magnet

Space of neutron shield for
CS

(need design)

Neutron damage Easy wall replacement with
blanket cassette

(need design)

Heat load Liquid wall (+ detachment) (need proof and technology
to separate Tritium)
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• ST may be able to have solutions for most issues to realize a fusion reactor.
• Since ST experiment is not sufficient, most physics solutions need proof.
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Conclusion

• Major issues for fusion reactor are not very serious in ST.

– Confinement, Steady state, Disruption,

– Neutron damage, Cost (Low field),

• We made a conceptual Design of superconducting ST reactor

– R=4.5 m, a=2.5 m, Bt=2.3 T,

– Fusion power: 2.5 GW (Electric power: 0.85GW)

– UTF=24 GJ: half of ITER

• Further efforts are required

– Proof of steady state operation, high BS current, high Te,

– Diverter

– Tritium

– Liquid metal
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