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• SUNIST: Sino UNIted Spherical
Tokamak
– What are united?

• Department of Engineering Physics,
Tsinghua University

• Institute of Physics, Chinese Academy of
Sciences

– Major parameters
• R0/a: 0.3 / 0.23 m ~ 1.3
• BT0: <0.15 T
• IP: ~ 50 kA
• ne: ~ 11019 m-3

– Major diagnostics
• Langmuir probes
• Normal ( <100 kHz) / High frequency (~1

MHz) magnetic probes
• Visible Spectrometers (250~ 750 nm)
• 94 GHz interferometer
• 8 mm reflectometer
• Fast visible camera
• Ha diode array

Introduction to SUNIST
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Overview of the SUNIST device

The vacuum
vessel of SUNIST

Section view of the
SUNIST device



• Non-inductive current startup and drive
– Startup: by electron cyclotron waves (ECW)

• Breakdown the neutral gas and initiate a small plasma current

– Drive: by Alfven waves (AW)
• Maintain the ohmic plasma current

• Properties of ST plasmas
– Edge plasmas

• Electrostatic/magnetic fluctuation and anomalous transport characteristics

– MHD characters
• MHD behaviors and methods to affect or control MHD activities

Major Research Interests of SUNIST
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• Recent research progress

– Analysis of the startup by ECWs

– Preliminary results of AW experiments

– MHD studies

• Recent engineering progress

– Upgrade of the field power supplies

– Other upgrades

• Future plans

• Summary

Outline
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• Brief experimental results of
ECW startup

– 2.45 GHz/100 kW/10 ms (limited)

– O mode outboard injection

– ~2 kA IP last for several ms

– IP is inversely proportional to BV

– Closed flux surface may formed but
no current jump observed

• What we focused on

– The spikes at the beginning of
discharges (IP, Ha and ne)

–  The time and spatial evolution of
ne is essential to understand the
physics of startup

–  Investigate the transient
process of the plasmas during
startup !

– PS: spikes are widely found on STs

Analysis of ECW startup
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• Ha and the reflected microwave are
found to have connections with
these scanning parameters
– These two signals are fast enough to

be able to catch the details of changes

Effects of BV, BT and Prf on the spikes
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Slew rate of the
reflected rf

power

Delay
of Ha

peaks

Maximum
amplitude of

Ha

Amplitude
of the flat
top of Ha

BT + - 0 0

BV - 0 - 0

Prf 0 - + 0

Conjectured
explanations

Drift/Formation
time of the cut

off layer

Power
density
@ ECR

Ionization
rate and loss

rate

Microwave
frequency

Conjectures from the scanning results
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Summary of the scanning results
+: positive effects, -: negative effects; 0: no effects



• Main processes

– Ionization by microwaves

– Reflection of microwaves

– The motion of particles: (1) drift and diffusion across the field lines, (2) parallel
motion along field lines

• Features of our experimental arrangements

– Perpendicular installation of the horn antenna

• The antenna acts not only as a launcher of power microwaves but also a receiver of
reflected microwaves

The physical image of the initial stage of ECW startup
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• For electrons (100 eV)
– Lamor Radius: ~ 0.4 mm (v// = 0, B = 875 G)
– v//: ~6E6 m/s (

⊥
)

• For hydrogen gas (300 K, 1E-3 Pa)
– en: ~3E4 1/s (3E9 1/s for 1 torr)
– ionization: ~2E4 1/s (2E9 1/s for 1 torr)
– ei: ~ 1E3 1/s (ne ~ 1E17)

• For SUNIST (R0 = 0.3 m, B = 875 G)

– R ܤߘ
ଶ்

௤

ଵ

ோ
஼
஻

: ~ 7.6E3 m/s (vertical)

– ܧ × ܤ
୉

୆
: ~1.1E3 m/s (E = 100 V/m) (radial)

– V ∥

஻
௭

஻
்

: ~ 1.4E5 m/s (Bz = 20 G) (vertical)

Estimation of the speeds

2011-9-29 10SUNIST



• A 1.5 dimension model
– To describe the main processes
– To simulate the time and spatial

evolution of ne, the characters of
microwave reflections

– Approximations: optical launch and
receive, WKB et al.

Modeling
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Compare the simulations and the experiments
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Due to:



• Recent research progress

– Analysis of the startup by ECWs

– Preliminary results of AW experiments

– MHD studies

• Recent engineering progress

– Upgrade of the field power supplies

– Other upgrades

• Future plans

• Summary

Outline

2011-9-29 13SUNIST



Principle of Alfven wave current drive

• Diagram of Alfven wave current drive (AWCD)
– The peristaltic Tokamak (Wort, 1971)

• Apply AWCD to SUNIST
– 4 pairs of strap antennas

– 0.15 T / 1E19 m-3, resonant frequency: 0.4 ~ 1 MHz

z

B
eE

dt

dv
m z

z
z




 

N J Fisch and C F F Karney, 1987
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ev
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)( vf
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The driving force:

Vph is slow thus thermal
electrons are driven:

The schema:
Vacuum Vessel
Antennas
Plasmas



• Simple design, simple manufacture

– Extends in the poloidal direction as much as
possible

Alfven wave antenna design for SUNIST
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BN plates

main strap

bolts

CF-200 flange
feeder

returning
strap

bolts

150 mm

50 mm

Support for
BN plates

Tan Y, Gao Z, He Y. Fusion Eng. Des. 2009;84(12):2064-71.



• Antennas
– Currently no shielding, no limiters

– Two of four pairs used

–  phasing

– |N|=1 ~ 60%, |M|=1 ~ 15%

• The RF generator

– Four phases outputs

• But only two phases are stable

– 20 ~ 50 kW, 0.4 ~ 1 MHz (non-continuous)

• Experimental parameters

– IP：30~50 kA

– ne： 0.5 ~ 319 m-3

– BT：800~1200 G

• Antenna impedances

– Have similar trends as 1-d calculations

Preliminary results of AW experiments
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antennas

Experimental results (left) and theoretical results (right)
of the impedances of antennas

Toroidal arrangement of the antennas(left) and a picture
of the antennas along with plasmas (right)



• Runaway discharges
are enhanced when:
– Low IP (~30 kA), low ne

(<1E19 m-3)

– Hard to understand
• The speed of rf phases and

the runaway electrons differ
by one order of magnitude

• Vc～1.5*10-2 (2πRn/V)/2 ～
2*107m/s (for ne～1018m-3)

• Vph～f2 π R ～ 1.5*106 m/s

• Normal discharges

– 50 kA，>1E19 m-3

– No effects observed

The effects of RF waves on IP
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Runaway discharges

Normal discharges
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Internal reconnection events on SUNIST
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• Motivations

– Internal reconnection events (IREs)
are widely found on STs

– What mode structures do IREs have?

– The evolution of equilibrium
parameters during an IRE

• Methods
– Magnetic measurements

– EFIT

– SVD analysis

A typical discharge with IREs of SUNIST

Zoomed in waveforms of IP and magnetic perturbations
of an IRE

Magnetic probes (*) and flux
loops (.) used to study MHD

activities on SUNIST

Zeng L, et al. Plasma Sci. Tech. 2011;13(4):420.



• Mode structures and the evolutions of
parameters

IRE analysis
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The poloidal (upper) and toroidal (lower) modes
before, during and after an IRE on SUNIST

before during after

The evolution of elongation ratio (upper) and
poloidal beta (lower) in an IRE on SUNIST

IREs have a strong dependence on the strength of
toroidal field



• Apparatus

– A biased DC voltage is applied to an
electrode located at the equatorial plane

– Diameter: 3 cm; voltage applied: 200 V

• Effects

– The biased voltage excites the harmonics
of MHD perturbations !!!???

– Expected: to suppress MHD (since the Er

cross BT shearing effects)

The effects of biased electrical field on MHD
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The electrode

The discharge without biased voltage The discharge with biased voltage



• Biased radial magnetic field
– 5 turns, L: 210 uH, I: 1 kA, BR max: 37

Gauss

– Suppress the MHD oscillations

– Change the spatial structures

– Slightly increase electron density

The effects of biased magnetic field on MHD

2011-9-29 22SUNIST

37.5 38 38.5
-0.3

0

0.3

t(ms)

U
1

SUNIST#110429062

37.5 38 38.5
-0.3

0

0.3

t(ms)
U

1

SUNIST#110429061

0.5

1

30

210

60

240

90

270

120

300

150

330

180 0

SUNIST#110429061@37.2-37.9ms

V
1

0.5

1

30

210

60

240

90

270

120

300

150

330

180 0V
2

0.5

1

30

210

60

240

90

270

120

300

150

330

180 0

SUNIST#110429062@37.2-37.9ms

V
1

0.5

1

30

210

60

240

90

270

120

300

150

330

180 0V
2

0.9

6.8

12.7

18.6

I P
(k

A
)

Shot 101211009, 101211008

266

532

798

1064

F
ri

n
g

es
(a

.u
.)

35 36 37 38 39 40 41 42

0.19

0.38

0.57

0.76

Time (ms)

Ic
o
il

(K
A

)

The discharge without biased magnetic field The discharge with biased magnetic field

The coils to
produce a biased
magnetic field.

ne slightly increases when the
radial magnetic field is applied



• Recent research progress

– Analysis of the startup by ECWs

– Preliminary results of AW experiments

– MHD studies

• Recent engineering progress

– Upgrade of the field power supplies

– Other upgrades

• Future plans

• Summary

Outline

2011-9-29 23SUNIST



• Pulse length limits SUNIST’s ability

• Ohmic field power supply: double
swing operation

– IGBT switches enable +10 kA-5 kA
swing (+13 kA -13 kA further)

– Pulse length of ohmic discharge has
been extended to >10 ms (20 ms
expected further)

• Vertical field power supply:
arbitrarily programmable

– DSP + IGBT (1.5 kA) solution

– Adjustments are on going

Upgrade of field power supplies
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• SUNIST is wirelessly controlled and
monitored

– The feasibility of wireless monitoring and
control of a tokamak has been verified

– Using Zigbee technology (now very popular in
the Internet of Things)

– Good flexibilities and reliabilities

• A new magnetic diagnostic system
– 13 flux loops / 15 poloidal probes / 6 toroidal probes

– Plasma equilibrium reconstruction and MHD
analysis can be done based on this system

Other upgrades
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• Continue to startup by ECW
– The old 2.45 GHz magnetron source is damaged

– A 5 GHz/200 kW/50 ms microwave system is under construction
(Institute of Electronics, CAS)

• Re-try AWCD experiments
– Based on ohmic discharges with longer flat top

– With BN limiters installed (design completed)

• Continue MHD studies
– With better abilities of equilibrium control

• Alfven eigenmodes investigation
– Use the AWCD antenna systems

Future plans
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• The transient of process of ECW startup is analyzed. The process involves
particle drifts and microwave reflections. The simulation results of a simple
model can reappear the experimental results.

• Preliminary results of Alfven wave experiments show that runaway
discharges can be enhanced by the low phase speed waves. This is difficult
to understood.

• Both biased electrical and magnetic field have observable effects on MHD
activities.

• The ohmic field of SUNIST is now operated in double swing mode. The
vertical field can be arbitrarily programmed.

• The SUNIST machine is wirelessly controlled and monitored. This brings a
lot of flexibilities to us.

• Future plans of SUNIST are also presented.

Summary
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Questions, comments and suggestions are warmly welcome!
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