Advances in Steady Inductive Helicity Injection for Plasma Startup and Toroidal Current Drive

Brian Victor on behalf of the HIT-SI team September 27, 2011

HIT-SI has achieved a major advance in current drive with deuterium operations

- Toroidal currents over 50 kA
- Separatrix current—current not linking the helicity injectors—sustained near 40 kA
- Current amplifications (I_{tor}/I_{inj}) of up to 3
- Toroidal current persistence of up to 0.65 ms after injector shutoff

Outline

- Description of the Helicity Injected Torus-Steady Inductive (HIT-SI)
- Results of deuterium experiments
 - Increase in the ratio of current density to electron density (j/n) led to improved performance
- High current ratio (I_{tor}/I_{inj}) deuterium shots have different characteristics than past helium shots
 - Decrease in the n = 1 toroidal mode at higher current amplifications indicates more quiescent, direct toroidal current drive
 - Lower magnitude internal magnetic fields with respect to Taylor equilibrium characteristic of plasma pressure

HIT-SI device

DC toroidal current

HIT - SIGO

W

HIT-SI injects helicity to form toroidal current in the confinement volume

$\mathbf{K} \equiv \int \mathbf{A} \cdot \mathbf{B} \, d\mathbf{V} = 2 \phi \boldsymbol{\psi}$

- Magnetic helicity, K, is the self-linkage of magnetic flux
- Toroidal current is formed through the relaxation to a minimum energy, or Taylor, state under the constraint of helicity conservation

Conventional tokamaks use a central solenoid coil to inject helicity

 $K = 2V\Psi$

- Loop voltage, V, from the central solenoid coil
- Toroidal flux, Ψ, from the toroidal field coils

Steady Inductive Helicity Injection (SIHI)

$$K = 2V_{inj}\Psi_{inj}$$

$$V_{inj} = V_{max} \sin \omega t$$

$$\Psi_{inj} = \Psi_{max} \sin \omega t$$

The injectors operate 90 degrees out of phase, giving

$$\dot{K} = 2V_{max}\Psi_{max}(\cos^2\omega t + \sin^2\omega t)$$

$$= 2V_{max}\Psi_{max}$$

HIT-SI design features and parameters

Parameter	Range	D Values
R ₀	0.33 m	0.33 m
axial length	0.57 m	0.57 m
f _{inj}	5.8, 15 kHz	~ 15 kHz (67 µs)
l _{inj}	≤ 30 kA	~ 15 kA
V _{inj}	200 – 600 V	~ 500 V
Ψ_{inj}	≤ 1.7 mWb	~ 1.2 mWb
P _{inj}	≤ 10 MW	~ 10 MW
n _e	1 – 5 x10 ¹⁹ m ⁻³	2 x 10 ¹⁹ m ⁻³
I _{tor}	≤ 58 kA	~ 50 kA

Helium operations are used to condition the walls for high-performance deuterium shots

- The plasma facing surface in HIT-SI is made of alumina
 - When the surface is clean the alumina pumps deuterium
- To condition the machine, several (~ 30) low power helium shots are taken
 - The magnitude of hydroxide and deuterium line radiation indicates the cleanliness of the machine

Improved toroidal current growth is a result of better density control

The key is to fuel the injectors without over fueling the confinement volume

- At too low of fueling rates the injectors become starved
- Deuterium operations achieve lower density in the confinement volume with higher fueling rates

Hydroxide radiation increases with repeated deuterium shots

A large, broadband
increase in hydroxide
radiation occurs after
repeated deuterium
shots with the
buildup of deuterium
in the walls

Current amplification of 3 is a spheromak record

- The injector currents are added in quadrature and smoothed over an injector cycle
- The toroidal current is smoothed over an injector cycle
- Shows a sustained current amplification greater than 2 with a peak value of 3
- Up to 0.65 ms toroidal current persistence

Surface probes are used to construct Amperian loops at 4 toroidal angles

Additional probes used for Fourier mode decomposition

n = 1 toroidal mode decreases at higher toroidal currents

 Calculated using Fourier analysis of the poloidal magnetic fields measured by the surface probes

 Poor performing shot has significantly higher n = 1 activity despite similar injector currents

Initially the injectors couple to the n = 1 eigenstate of the confinement volume

- Increased n = 1 mode activity is measured before toroidal current is measured
- Note: the Fourier analysis of the surface probes cannot distinguish between the injectors and the n = 1 eigenstate

Injector n = 1
$$\longrightarrow$$
 n = 1 eigenstate \longrightarrow n = 0 eigenstate

As the toroidal current grows the injector currents flow in the same toroidal direction as the n = 0 eigenstate

- The n = 0 eigenstate is the lowest energy eigenstate of the confinement volume
- Injectors begin to couple directly to the n = 0 eigenstate
- More quiescent current drive mechanism an indication of direct coupling between the injectors and n = 0 eigenstate

Taylor state reconstruction is compared to internally measured fields

- DC field scaled by surface probe measurement of toroidal current
- Injector fields scaled by Rogowski measurement of injector currents
- Taylor state comparison gives information on differences between plasma conditions and zero pressure, constant lambda (λ = 10.3 m⁻¹) equilibrium solution

 $\nabla \times \vec{B} = \mu_0 \vec{j} = \lambda \vec{B}$

Equilibrium model courtesy of C. Hansen

Internal poloidal field suppressed for high current ratio shots

Internal poloidal field suppressed for high current ratio shots

- Internal field near the wall consistent with the surface probes
- DC field away from the wall inconsistent with the Taylor state as predicted by surface probe measurements
- This diamagnetic effect is indicative of plasma pressure and a region of plasma separate from the injector flux

Internal toroidal field also suppressed for high current ratio shots

Minimum toroidal current near 40 kA seen at each toroidal angle

- Toroidal current is sustained through each Amperian loop for multiple injector cycles
- This is not an average current, but a minimum toroidal current in the confinement volume

Minimum current bounds toroidal current not linking the injectors

- Separatrix current is current that does not link the injectors
- Up to 40 kA of separatrix current achieved during injector drive

Toroidal currents through Amperian loops are explained by a model with separatrix and injector currents

The key to the model is that the injector currents always flow in the direction of the separatrix current

Summary

Large improvement in performance seen for deuterium operations

- I_{tor} > 50 kA, I_{tor}/I_{inj} ~ 3, I_{tor} persistence ~ 0.65 ms

- Magnetic characteristics of high performance shots consistent with region of toroidal flux separate from injector flux
 - Change in mode activity at higher current ratios indicates more direct injector drive of toroidal current
 - Internal probe measurements indicate plasma pressure during injector drive
- Minimum toroidal current through each Amperian loop bounds separatrix current at 40 kA

Acknowledgements

Faculty and Staff

- Thomas Jarboe
- Brian Nelson
- David Ennis
- Roger Smith
- George Marklin
- Nathaniel Hicks
- Raymond Golingo
- John Rogers
- Jonathan Hayward
- Dzung Tran
- Dennis Peterson
- Luisa Pareja-Klemisch
- Susan Griffith

Graduate Students

- Cihan Akcay
- Chris Hansen
- Aaron Hossack
- Kyle Morgan

Undergraduates

- Briar Doty
- Matthew Kraske