ISTW 2011, NIFS, Sep. 29th, 2011

Merging startup experiments in UTST and MAST

T. Yamada¹, M. Gryaznevich², S. Kamio¹, Q. H. Cao¹, N. Suzuki¹, T. G. Watanabe¹, H. Itagaki¹, K. Takemura¹, K. Yamasaki¹, K. Ishiguchi¹, R. Imazawa¹, Y. Hayashi¹, H. Tanabe¹, T. Ii¹, M. Inomoto¹, Y. Takase¹, Y. Ono¹

¹*The University of Tokyo, Japan* ²*Culham Centre for Fusion Energy, UK*

Magnetic reconnection releases a large amount of magnetic energy to plasma flow and thermal energies, both in fusion plasmas and astrophysics.

UTST adopts double null merging (DNM) method for plasma formation.

At UTST, DNM start-up is performed by *outer* PF coils to produce a high-beta ST in a reactor relevant situation.

UTST has pickup coil arrays inside the vessel.

An example of the poloidal flux, Ψ , of EF.

Typical discharge of the UTST plasma

Seed plasma in a spiral magnetic field.

B. DNM start-up discharge w/o CS

to establish a new CS-less start-up method

A. DNM + DI discharge

Plasma current reached 190 kA by using the DNM start-up and also direct induction by CS.

Magnetic reconnection was clearly observed by the pickup coil measurement.

100 lp PF (/turn) 80 60 TF (/turn) current[kA] 40 20 Washer gun 0 -20 EF (/turn) CS (/turn) -40 2 8 10 0 4 6 time[ms]

Fast camera images

T. Yamada *et al.*, PFR **5**, S2100 (2010)

B. DNM only discharge

Current sheets were observe during DNM.

Spectrometer measured Doppler broadening at the radial view during the merging.

Helicity injection from coil flux to ST through reconnection was observed in UTST.

MAST adopts merging compression (MC) as well as DI for plasma formation.

Two plasma rings, inductively formed around P3 in-vessel coils (2.0 ms), merge (3.0 ms), and eventually produce plasma current up to 0.45 MA (6.6 ms).

Reconnection of poloidal flux occurs in mid-plane accompanied by rapid heating of ions and electrons.

Temperature and density measurements of MAST MC plasmas are reported here.

Major/minor radii	0.8/0.6 m
Toroidal field	0.6 T @ 0.7 m
Plasma current	1.35 MA
Temperature	up to 3 keV
Density	10 ²⁰ m ⁻³

Electron temperature and density measurements by Thomson scattering (TS):

130-ch YAG TS (z = 1.5 cm)

300-ch Ruby TS (z = -1.5 cm)

P6 can shift the plasma vertically. -> 2D profiles can be obtained.

Temperatures in MC shots increase very high within a short time period (~10 ms) compared to DI shots (~200 ms).

More than 1 keV of T_e was achieved by MC.

 T_e reached 1 keV, about 6 ms after the merging completion.

Spikes in many signals were observed at the end of the merging.

During MC, fast change of the n_e profile and sudden increase of T_e were observed.

The peak of the n_e profile is separated at the X-point, and the two peaks move inward and outward.

The T_e profile increases abruptly after the density spike.

X-point, *R* ~ 0.45 m

Central peak and outer peaks appear after magnetic reconnection.

Electron density increases after the density spike.

It becomes a hollow profile.

Electron temperature suddenly increases after the density spike. At 6.5 ms, the central peak appears.

At 9.5 ms, the outer peaks appear.

It is interesting to know the origins and evolutions of the central peak and outer peaks.

2D $T_{\rm e}$ profs were obtained by shifting plasma.

Summary

UTST

Plasma start-up by DNM method was successfully observed in UTST.

- Plasma current up to 50 kA was achieved and proposed a new CS-less start-up method.
- With CS assist, plasma current reached 190 kA.
- By using acceleration coils, current sheet was observed.

During MC, radial density propagation both inward and outward from the Xpoint was observed.

MAST

- The T_e profile suddenly increased after the merging completion.
- 2D T_e profile after the merging revealed to have a central peak and an outer rim. Feed gas and TF determined the ratio.