

Assessment of Spherical Tokamak Reactors Comparing with Other Fusion Power Plants

Kozo YAMAZAKI¹, Tetsutarou OISHI¹, Kanae BAN¹, Takuya KONDOH¹, Hideki ARIMOTO¹, Yoshio NAGAYAMA²

¹Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan ² National Institute for Fusion Science, Toki, Gifu 509-5292, Japan

1

OUTLINE

 Introduction
Burning Simulation using "TOTAL" (Toroidal Transport Analysis Linkage)
Life-Cycle Assessment using "PEC" (Plasma, Engineering and Cost) Cost, CO2, Energy Payback etc.
Summary

1. Introduction

ST-Relevant Research (1/3)

TOKASTAR (miniature hybrid experiment)

29-3-2 (Oral) M. Hasegawa et al.,

"Low aspect ratio plasma in tokamak-helical hybrid device TOKASTAR-2".

28-3P-5 H. Ozeki et al.,

"Confinement Analysis of Spherical Tokamak-Stellarator Hybrid Configurations".

ST-Relevant Research (2/3)

TOTAL code (burning plasma simulation)

28-3P-18 D. Kurita et al.,

"Neoclassical Tearing Mode Analysis in Spherical Tokamak Burning Plasmas".

28-3P-20 T. Oishi et al.,

"Integrated Analysis on the Current Profile and the Operational Scenario of D-³He Spherical Tokamak

Reactors".

Toroidal Transport Analysis Linkage

ST-Relevant Research (3/3)

PEC (reactor system analysis)

30-2-1 (Oral) K. Yamazaki et al.,

"Assessment of Spherical Tokamak Reactors Comparing with Other Fusion Power Plants".

30-2-2 (Oral) K. Ban et al.,

"Life Cycle Assessment for Energy Payback of Spherical Tokamak Reactors".

2. Burning Plasma Simulation: Using "TOTAL" Code

History Start (~1980) Tokamak (2nd stability) *Nuclear Fusion Vol.25 (1985) 1543.* Helical Analysis *Nuclear Fusion Vol.32 (1992) 633.* Burning Simulation (Tokamak & Helical) *Nuclear Fusion Vol.49 (2009) 055017.*

Based on JT-60U ITB operation and LHD e-ITB data.

6

Main Feature of "TOTAL" is to perform both Tokamak and Helical Analyses

Core Plasma Equilibrium Tokamak: :2D APOLLO Helical: 3D VMEC, DESCUR, NEWBOZ Transport Tokamak: TRANS, GLF23, NCLASS Helical: HTRANS, GIOTA Stability NTM, Sawtooth, Ballooning mode

Edge transport H-mode edge transport

Impurity IMPDYN (rate equation) Tungsten ADPAC (various cross-section)

Fueling NGS (neutral gas shielding) model mass relocation model NBI HFREYA, FIFPC Puffing AURORA

Divertor density control, two-point divertor

Toroidal Transport Analysis Linkage

World Integrated Modeling

TOTAL-T,-H(J) TOPICS(J) TASK(J) CRONOS(EU) TRANSP(US) ASTRA(RU)

Time evolution of reversed-shear-mode operation with continuous HFS pellet injection

3. System Code Assessment: using "PEC" Code

History

Tokamak Ignition Design (~1980) Helical Design Assessment *IAEA-Montreal (1996)* Helical & Tokamak Assessment *IAEA-Lyon (2002)* Cost/CO₂/EPR Analysis in MFE reactors *IAEA-Geneva (2008)* Cost/CO₂/EPR Analysis in MFE & IFE reactors *IAEA-Daejeon (2010)*

Main Feature is Comparative Assessment of **Various Reactors**

Reference Designs

Type of Reactors	Tokamak	ST	Helical	Tokamak	Tokamak
	TR	ST	HR	TR	TR
*input	(DT)	(DT)	(D T)	(F - F)	(D ³ He)
$R_p / a_p *$	3.06	1.62	5.7	3.06	3.06
$R_p / < a_p > *$	2.50	0.87	(7.8)	2.50	2.50
$T_0 [keV] *$	30	30	20	30	80
<β>[%] *	(5.3)	(22.6)	5	(5.3)	(7.9)
β _N *	4	6	-	4	10
ellipticity k*	2.0	3.5	2.0	2.0	2.0
triangurality δ^*	0.5	0.5	-	0.5	0.5
B _{max} [T] *	13	7.4	13	13	20
- max [-]	(SC)	(NC)	(SC)	(SC)	(SC)
R _p [m]	<mark>5.97</mark>	<mark>4.00</mark>	<mark>14.0</mark>	<mark>5.06</mark>	<mark>7.85</mark>
a _p [m]	1.69	2.46	-	1.43	2.56
$< a_p > [m]$	2.39	4.62	2.1	2.02	3.14
$< n_e > [10^{20} m^{-3}]$	1.43	1.02	0.97	0.87	2.63
n _{e,crit}	1.50	1.20	1.17	1.38	1.34
B [T]	6.03	2.46	4.16	4.71	10.92
I _p [MA]	13.4	22.9	-	8.89	27.7
f _{BS} [%]	49	95	-	49	95
$\tau_{\rm E} [s]$	1.63	2.26	3.8	2.72	8.27
H _H -factor	1.31	1.67	-	2.32	4.25
ISS H-factor	-	-	5.01	-	-
P _{fusion} [GW]	2.62	3.21	1.87	0.59	2.74
$P_{\alpha}[GW]$	0.52	0.64	0.38	0.12	-
$P_{CD}[GW]$	0.12	0.01	-	0.13	0.19
$L_{neutron}$ [MW/m ²]	3.11	3.87	0.89	0.97	0.97
Blanket thickness [m]	0.85	0.90	0.69	0.90	0
Shield Thickness [m]	0.36	0.39	0.30	0.39	0.6
Wall Lifetime (Yr)	4.6	3.7	16.0	11.0	13.3

Multiple Approaches Have Similar COE,CO2, EPR

1GWe Plant

1¢~1¥

Comparisons with Other Power Plants

ST (with SC coil) is better than ST(NC coil) and TR (SC coil).

4. Summary

- Comparative system studies have been done for several magnetic fusion energy reactors (TR, ST, HR) and inertial fusion energy reactor (IR) .
- The advantages of TR in COE and of ST in lifetime CO_2 emission reduction are clarified.
- The optimized ST system with SC coils and without inboard blanket is suggested.
- Comparing fusion reactors with other electric power generation systems, we confirmed that fusion reactor, especially ST, does not emits large CO₂ amount.