Application of merging/reconnection heating for spherical tokamak in MAST

H. Tanabe¹, T. Yamada², K. Yamasaki¹, T.Watanabe¹, K. Gi¹, M. Inomoto¹, M. Gryaznevich³, R. Scannell³, N. Conway³, B. Crowley³, C. Michael³ and Y. Ono¹

¹ Graduate School of Frontier Sciences, University of Tokyo, Tokyo 113-0032, JAPAN

² Faculty of Arts and Science, Kyusyu University, Fukuoka, 819-0395, JAPAN

³ CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK

Lead-author e-mail: tanabe@ts.t.u-tokyo.ac.jp

The world largest application of merging/reconnection heating, which was developed in START [1] and TS-3 [2], has been studied in detail using 130 channel YAG- and 300 channel Ruby-Thomson scattering measurement and a new 32 chord ion Doppler tomography diagnostics [3] in MAST. In addition to the previously achieved record heating of ~1keV [4], it is found that magnetic reconnection mostly heat ions globally in the downstream region and electrons locally in the X point by 2D imaging measurement of ion and electron temperature profile [5]. Electrons mostly gain energy around X point with the characteristics scale length of $0.02-0.05 \text{m} < c/\omega_{pi}$, while ion temperature increases inside the acceleration channel of reconnection outflow with the width of $c/\omega_{pi} \sim 0.1$ m and the downstream where reconnected field forms thick layer of closed flux surface. The toroidal guide field mostly contributes to the formation of a localized electron heating structure at the X point and not to bulk ion heating downstream. The global reconnection heating of ions increases as a function of poloidal magnetic field B_p^2 by outflow heating mechanism. In the millisecond time scale startup experiment in MAST, the energy relaxation time between ions and electrons is in the comparable time scale ($\tau_{ei}^{E} \sim 4-11$ ms) and electrons are also heated globally after the delay of τ^{E}_{ei} , forming triple peak structure with the hot spots at the X point and downstream both with and without the assist of centre solenoid.

- [1] M. Gryaznevich et. al., Phys. Rev. Lett., 80, 3972 (1998).
- [2] Y. Ono et. al., Phys. Rev. Lett., 76, 3328 (1996).
- [3] H. Tanabe et. al., Nucl. Fusion, 53, 093027 (2013).
- [4] Y. Ono et. al., Phys. Plasmas, 22, 055708 (2015).
- [5] H. Tanabe et. al., Phys. Rev. Lett., submitted (2015).