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Motivation

 ELM heat flux characterization is important to determine
requirement of ELM control system performance in future
machines

* Relationship of wetted area (A,;) to the size of ELM energy loss
directly impacts peak heat flux (gpeay)

* Larger A, allows larger total ELM energy loss (AEg,,,) to be
acceptable, however uncertainty on A, remains unresolved yet

 Relation of ELM stability regime with different toroidal mode

number to A,.; behavior
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Acceptable ELMs for various |, for ITER are predicted
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divertor damage by ELMs

A. Loarte, NF 2014
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Example of ELM striations to broaden heat flux profile in JET
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* Number of striations, i.e. ELM filaments, observed on the outer
divertor target increases from 3 — 5 to 10 — 15 during the ELM rise
time - consistent with peeling-ballooning ELMs with n~15 from
stability analysis

A

W

<t Significantly increases compared to inter-ELM value, by 3-4x
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NSTX data
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Definition of heat flux footprint parameters

Outer divertor in LSN

A d 1-D profil
135185, 2-D heat flux (MW/m?), t=180.115ms verage protie
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» 2-D heat flux is averaged out to produce 1-D profile
- Total deposited power to divertor Py, g = _f27zf q,, (r)dr
* Wetted area A\Net = I:)div,IR /q peak,tor
—_ t J—
* Integral heat flux width Agor = Piv i 1 270 e A pearcior = Phwet | 278 e

- Total deposited energy to divertor Wy, r = j Py 0t
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Example of heat flux profiles with 0 and 4-5 ELM striations
show opposite heat deposition pattern in NSTX

132433, t=0.273774sec, (MW/m?)

152460 t= O2287595ec (MW/m)
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J-W. Ahn, NF 2014
* An ELM with no striations > peaked heat flux profile with high ¢, (> SMW/m?)

 4-5 ELM striations spread heat over a larger area, reducing gyeqy (~ 2MW/m?)

« NSTX ELMs lie against peeling side with n=1 -5
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ELM heat flux profile with O striation — decreases most

significantly

Wet
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« No striation seen during the whole ELM rise time
A, decrease is generally largest, up to ~40 — 50%

Opeak KEEPS rising, A, continues to decrease during the ELM rise time
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ELM heat flux profile with 3 striations — A, begins to rise
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« 3 -4 filaments slightly raises A,; but at a later stage striations disappear
and A,,.; decreases while power goes up

* Generally, A, can either increase or decrease for 3 striations
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Aet INCreases and q,., decreases with the number of
observed ELM striations

, » Data for a total of 135 ELMs from
; a weaker plasma shape (x~1.9,
- ; 0~0.5)

< ay
v .-,:, 3.7
N
[

Each data point for ELM peak
time. AA, ¢ and AqQ,e, for
changes w.r.t. inter-ELM value

* Ay INCreases and gy

decreases with the # of striations

O

« Even for the broadening case,
spreading of heat is not sufficient

# of striations
J-W. Ahn, NF 2014
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Ayet @nd g, Change with the ELM size is unfavorable for

NSTX ELMs

T ELM,rise

At ELM peak times

N
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Power (MW)
N R O

ELM,rise

(RJ

)

Measured ELM
energy loss by IR
camera during the
ELM rise time

(AEg mise) IS Used as
a metric for ELM size

A, decreases and
Opeak Clearly
increases with
increasing ELM size
- Sharp contrast to
JET and AUG
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DIII-D data

@ NSTX-U %

OAK
RIDGE

J-W. Ahn, Relation of pedestal stability to behavior of ELM heat flux footprints, ISTW 2015, 11/04/2015

12



drops significantly during ELM for low collisionality:
similar to NSTX

wet
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* Only a few ELM filaments observed in the heat flux profile for low v *
» Profile narrows significantly during the ELM by ~30 — 40%

* Increase of peak heat flux is severe (x3-4)
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A, behavior with ELM size becomes more favorable with
Increasing collisionality
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n=10 peeling-ballooning ELMs show weaker broadening and
n=25 ballooning ELMs show stronger broadening of heat flux

v.*~0.9
Profile weaker broadening
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Stability analysis
shows n=10 most
unstable, peeling-
ballooning, for
v.*~0.9 = weaker
broadening of ELM
heat flux footprints

High density led to
v*~3.5 with n=25
most unstable,
ballooning regime
—> stronger
broadening

Work in progress for
low v * case
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EPED model predicts ITER ELMs to be against peeling
boundary with low n-number like in NSTX

EPED modeling as a function of ng e  Stability analysis shows
that ITER pedestal will be
against current-driven
kink/peeling modes due to
low collisionality and
shaping

-3

20e19 m3

Edge current (jegge)
o
D

* Predicted n~3 — 10, closer
to NSTX - ELM profile
broadening might not be as
effective as in JET

- |TER baseline scenario T

4 5 6 7 8 9
Norm. Pressure Gradient (o)
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Conclusions

ELM filament structure determines A, change and the # of
striations can be used as a good metric for toroidal mode
number of an ELM - More ELM filaments broaden heat flux
profile more effectively

ELM heat flux from peeling ELMs are concentrated near the
strike point, leading to reduced A, ;. Bigger ELMs reduce A,

Increase of collisionality (v.*) raises toroidal mode number of
ELMs, moves plasma toward ballooning side and increases
profile broadening, leading to A, increase and (., decrease

ITER is predicted to be in low v * regime, therefore low n ELMs
could produce unfavorable trend - Need detailed study of
stability analysis and the requirements for ELM mitigation
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Backup slides
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ldeal MHD modeling for low v.,* ELMs — MISHKA and ELITE
show different n for dominant unstable mode

MISHKA
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* T sep SCan was carried out to investigate trend

« MISHKA indicates that maximum growth rate of unstable mode occurs at
n=3 — 7 - peeling side

 ELITE shows n~15 for maximum growth rate - peeling-ballooning?
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ELM heat flux profile with 3 striations that reduces A

wet

2 : 6 :
i; [m:MW —eo—Before ELM
+q:e\g51rc§ (MV)V/m2) 5, ——At ELM peak
15 ] “c —e—After ELM peak
132434 E 4t -
132434
=
1 —
Pt
=
- 2 d
0.5 3
T
0 - - 8 -
0.245 0246 0.247 0.248 Wi 0.8 0.85 0.9
t (sec) r(m)

* Three filaments are observed but A, decreases in this case 2 (e,
remains rather constant after peak power deposition
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