

Supported by

Relation of pedestal stability regime to the behavior of ELM heat flux footprints in NSTX-U and DIII-D

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

G.P. Canal², S.K. Kim³, J.M. Canik¹, A. Diallo⁴, K.F. Gan⁵, T.K.Gray¹, C. Lasnier⁶, R. Maingi⁴, A.G. McLean⁶, Y.S. Na³, P.B. Snyder², V.A. Soukhanovskii⁶, and the NSTX-U Research Team

¹ORNL, ²GA, ³SNU, ⁴PPPL, ⁵ASIPP, ⁶LLNL

18th International Spherical Torus Workshop Princeton University, USA Nov 3 - 6, 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Science

Motivation

- ELM heat flux characterization is important to determine requirement of ELM control system performance in future machines
- Relationship of wetted area (A_{wet}) to the size of ELM energy loss directly impacts peak heat flux (q_{peak})
- Larger A_{wet} allows larger total ELM energy loss (ΔE_{ELM}) to be acceptable, however uncertainty on A_{wet} remains unresolved yet
- Relation of ELM stability regime with different toroidal mode number to A_{wet} behavior

🖌 OAK

RIDGE

Acceptable ELMs for various I_p for ITER are predicted

A. Loarte, NF 2014

OAK RIDGE

- A_{wet} increase by up to a factor of 6 has been observed in JET
- I_p is key parameter for pedestal pressure, therefore ELM energy loss
- Necessary A_{wet} increase for a range of I_p to avoid divertor damage by ELMs

Example of ELM striations to broaden heat flux profile in JET

- Number of striations, i.e. ELM filaments, observed on the outer divertor target increases from 3 – 5 to 10 – 15 during the ELM rise time → consistent with peeling-ballooning ELMs with n~15 from stability analysis
- A_{wet} significantly increases compared to inter-ELM value, by 3-4x

OAK RIDGE

NSTX data

Definition of heat flux footprint parameters

Outer divertor in LSN

• 2-D heat flux is averaged out to produce 1-D profile

• Total deposited power to divertor *l*

$$P_{div,IR} = \int 2\pi r \bar{q}_{tor}(r) dr$$

• Wetted area
$$A_{wet} = P_{div,IR} / \overline{q}_{peak,tor}$$

- Integral heat flux width $\overline{\lambda}_{q,tor}^{int} = P_{div,IR} / 2\pi r_{peak} \overline{q}_{peak,tor} = A_{wet} / 2\pi r_{peak}$
- Total deposited energy to divertor $W_{div,IR} = \int P_{div,IR} dt$

OAK RIDGE

Example of heat flux profiles with 0 and 4-5 ELM striations show opposite heat deposition pattern in NSTX

- An ELM with no striations \rightarrow peaked heat flux profile with high q_{peak} (> 5MW/m²)
- 4-5 ELM striations spread heat over a larger area, reducing q_{peak} (~ 2MW/m²)
- NSTX ELMs lie against peeling side with n=1-5

OAK RIDGE

ELM heat flux profile with 0 striation – A_{wet} decreases most significantly

No striation seen during the whole ELM rise time

OAK RIDGE

D NSTX-U

- A_{wet} decrease is generally largest, up to ~40 50%
- q_{peak} keeps rising, A_{wet} continues to decrease during the ELM rise time

ELM heat flux profile with 3 striations – A_{wet} begins to rise

- * 3 4 filaments slightly raises A_{wet} but at a later stage striations disappear and A_{wet} decreases while power goes up
- Generally, A_{wet} can either increase or decrease for 3 striations

OAK RIDGE

A_{wet} increases and q_{peak} decreases with the number of observed ELM striations

OAK RIDGE

- Data for a total of 135 ELMs from a weaker plasma shape (κ~1.9, δ~0.5)
- Each data point for ELM peak time. ∆A_{wet} and ∆q_{peak} for changes w.r.t. inter-ELM value
- A_{wet} increases and q_{peak} decreases with the # of striations
- Even for the broadening case, spreading of heat is not sufficient

A_{wet} and q_{peak} change with the ELM size is unfavorable for NSTX ELMs

OAK RIDGE

NSTX-U

Measured ELM energy loss by IR camera during the ELM rise time $(\Delta E_{ELM,rise})$ is used as a metric for ELM size

A_{wet} decreases and
q_{peak} clearly
increases with
increasing ELM size
→ Sharp contrast to
JET and AUG

DIII-D data

A_{wet} drops significantly during ELM for low collisionality: similar to NSTX

- Only a few ELM filaments observed in the heat flux profile for low v_e^*
- Profile narrows significantly during the ELM by ~30 40%
- Increase of peak heat flux is severe (x3-4)

OAK RIDGE

A_{wet} behavior with ELM size becomes more favorable with increasing collisionality

OAK RIDGE

D NSTX-U

n=10 peeling-ballooning ELMs show weaker broadening and n=25 ballooning ELMs show stronger broadening of heat flux

- Stability analysis shows n=10 most unstable, peelingballooning, for $v_e^* \sim 0.9 \rightarrow$ weaker broadening of ELM heat flux footprints
- High density led to v_{e}^{*} ~3.5 with n=25 most unstable, ballooning regime \rightarrow stronger broadening
- Work in progress for low v_e^* case

EPED model predicts ITER ELMs to be against peeling boundary with low n-number like in NSTX

OAK RIDGE

- EPED modeling as a function of n_{e,ped} ・ こ
- Stability analysis shows that ITER pedestal will be against current-driven kink/peeling modes due to low collisionality and shaping
 - Predicted n~3 10, closer to NSTX → ELM profile broadening might not be as effective as in JET

Conclusions

- ELM filament structure determines A_{wet} change and the # of striations can be used as a good metric for toroidal mode number of an ELM → More ELM filaments broaden heat flux profile more effectively
- ELM heat flux from peeling ELMs are concentrated near the strike point, leading to reduced A_{wet}. Bigger ELMs reduce A_{wet}
- Increase of collisionality (v_e^*) raises toroidal mode number of ELMs, moves plasma toward ballooning side and increases profile broadening, leading to A_{wet} increase and q_{peak} decrease
- ITER is predicted to be in low v_e^* regime, therefore low n ELMs could produce unfavorable trend \rightarrow Need detailed study of stability analysis and the requirements for ELM mitigation

OAK RIDGE

Backup slides

Ideal MHD modeling for low v_e^* ELMs – MISHKA and ELITE show different n for dominant unstable mode

T_{e,sep} scan was carried out to investigate trend

OAK RIDGE

- MISHKA indicates that maximum growth rate of unstable mode occurs at n=3 - 7 → peeling side
- ELITE shows n~15 for maximum growth rate \rightarrow peeling-ballooning?

ELM heat flux profile with 3 striations that reduces A_{wet}

• Three filaments are observed but A_{wet} decreases in this case $\rightarrow q_{peak}$ remains rather constant after peak power deposition

OAK RIDGE