H-mode and ELM Dynamics Studies at Near-Unity Aspect Ratio in the PEGASUS Toroidal Experiment and their Extension to PEGASUS-Upgrade

M.W. Bongard

J.L. Barr, G.M. Bodner, M.G. Burke, R.J. Fonck, H.G. Frerichs, E.T. Hinson, D.M. Kriete, B.A. Kujak-Ford, B.T. Lewicki, J.M. Perry, J.A. Reusch, K.E. Thome, D.J. Schlossberg, O. Schmitz, G.R. Winz

18th International Spherical Torus Workshop PPPL Princeton, NJ November 3, 2015

H-mode Readily Accessed in A ~ 1 PEGASUS ST

Limited L Limited H Diverted H

Fast visible imaging, Δt ~ 30 μs

- Low B_T at A ~ 1 → low H-mode P_{LH}
 - $P_{OH} >> P_{ITPA08} \sim B_T^{0.80} n_e^{0.72} S^{0.94}$
 - Limited or diverted topology
 - Facilitated by HFS fueling
- Standard H-mode features observed
 - Unique edge diagnostic access

PEGASUS Toroidal Experiment

A	1.15 - 1.3
R (m)	0.2 - 0.45
$I_{p}(MA)$	≤ 0.25
$B_{T}(T)$	< 0.2
$\Delta \tau_{\rm shot}$ (s)	\leq 0.025
Wall Type	SS + Ti getter

Edge Pedestals Present Between ELMs in H-mode

- Short pulse, low edge T_e permit detailed edge measurements
 - J_{ϕ}(R,t) via multichannel Hall probe^{1,2}
 - High spatial, temporal resolution
 - p(R) via triple Langmuir probe
 - Single point, high temporal resolution
- Clear current pedestal observed
 - L → H scale lengths: $4 \rightarrow 2$ cm
- Multi-shot Langmuir probe scans indicate pressure pedestal
 - Some edge distortion present from MHD

¹ M.W. Bongard et al., Rev. Sci. Instrum. **81**, 10E105 (2010)

² M.W. Bongard *et al.*, *Phys. Rev. Lett.* **107**, 035003 (2011)

Energy Confinement Improves in H-mode

• Equilibrium reconstructions yield au_e

$$\tau_e = \frac{W_K}{P_{in} - dW/dt - P_{rad}}$$

- Challenges: short pulse, MHD, I_{wall}(t)
- Significant dW/dt
- $W_k(\tau_e)$ increases after L-H transition
- H₉₈ increases from 0.5 to 1.0
- Ongoing: virial analysis for fast τ_e

Full Virial Analysis is Required as A \rightarrow 1

Technique gives magnetics based β_p , W_K , and τ_e^{-1}

$$\beta_{p} = S_{1}/2 + S_{2}/2(1 - R_{T}/R_{0}) + \mu$$

$$W_{K} = \frac{3}{2}\beta_{p} B_{pa}^{2} \Omega / 2 \mu_{0}$$

$$\mu_{expt} = 4\pi B_{T0}R_{0}\Delta\phi / B_{pa}^{2}\Omega$$

- Model equilibria at varied A, β_p highlight breakdown of high-A approximations
 - $-\beta_{p,circ} = 1 + \mu$ significantly overestimates $W_K(\tau_e)$ in paramagnetic regime
- Developing fast boundary reconstruction code to provide full treatment at A ~ 1

- 1.15

P_{I H} Measurements Extended to A ~ 1.2 in PEGASUS

Vary P_{OH} with power scan

- Transition time from ϕ_D bifurcation
- Wide parameter range
 - $P_{OH} = 0.1 0.6 \text{ MW}$
 - $n_e = 0.5 4x10^{19} \text{ m}^{-3}$
 - Inner wall limited
 - Diverted: USN (favorable ∇B)
- $P_{LH,exp} = P_{OH} dW/dt$
 - dW/dt from magnetic reconstructions
 - ~ 30% correction

P_{LH} Consistent with Global Parametric Scalings— But Differences Arising at Low A

- P_{LH}(n_e) consistent with ITPA scaling
 - FM³ model¹: minimum $P_{LH}(n_e) \sim 1 \times 10^{18} \text{ m}^{-3}$
- Magnetic topology independence
 - Diverted, limited edge topology similar
 - FM³: $P_{LH}^{LIM}/P_{LH}^{DIV} \sim (q_{\psi}^{LIM}/q_{\psi}^{DIV})^{-7/9}$

Limited

Diverted

At Low A, $P_{LH} \gg P_{ITPA08}$

- P_{LH} increasingly diverges from expectations as $A \rightarrow 1$
 - PEGASUS $P_{LH} / P_{ITPA08} \ge 10-20$
 - Confirms trend from NSTX, MAST
- Discrepancy may hint at additional physics

¹ Maingi *et al.*, Nucl. Fusion **50**, 064010 (2010)

² Martin *et al.*, J. Phys.: Conf. Ser. **123**, 012033 (2008)

³ Wesson, <u>Tokamaks</u>, 4th ed. (2011), p. 630

A ~ 1 Regime Well-Suited for Studies of ELMs and their Nonlinear Dynamics

- Filament structures observed
 - Coincident with D_{α} bursts
- Small ("Type III") ELMs ubiquitous, less perturbing
 - $P_{OH} \sim P_{LH}$
 - Low n

- Large ("Type I") ELMs infrequent, violent
 - $-P_{OH} >> P_{LH}$
 - Intermediate n
 - Can cause H-L back-transition

Quiescent Small ELM Large ELM

Details of Nonlinear ELM Behavior Emerging

- Simultaneously unstable toroidal modes present during ELM
 - Detectable only within ~ cm of LCFS
 - Nonlinear energy exchange
- Complex, multimodal J_{edge}(R, t) collapse
 - High $\Delta t \sim 6$ μs through single large ELM
 - Current filament ejection
- Challenge: studies of nonlinear ELM dynamics at Alfvénic timescales

Results Motivate PEGASUS-U Upgrade Proposal

- New centerstack assembly
 - OH solenoid via PPPL collaboration.
 - $\Delta\Phi_{OH}: 40 \to 170 \text{ mV-s}$
 - TF bundle: $0.15 \rightarrow 0.40$ T
 - Pulse length: $15 \rightarrow 50-100 \text{ ms}$
- Power system, control upgrades
 - New TF power supply
 - $I_{TF} \times 3-4$
 - Upgraded OH power supply
 - Improved V_{loop} control
- Comprehensive 3D-Magnetic Perturbation System
- Longer-term: ECH auxiliary heating
 - In discussion with ORNL

Castel Nut & Coaxial Feeds

PEGASUS-U Supports Focused Physics Mission

- Nonlinear pedestal and ELM studies
 - Simultaneous measurements of p(R,t), J(R,t), $v_{\phi}(R,t)$
 - New edge diagnostics (probe arrays, DNB)
 - Tests of Sauter neoclassical bootstrap model
- ELM Modification and Mitigation
 - Novel 3D-MP coil array
 - LFS array: 12 toroidal × 7 poloidal
 - Helically-wound HFS coils
 - LHI current injectors in divertor, LFS regions
- Physics of Local Helicity Injection Startup¹
 - High I_p, long-pulse startup
 - Projections to NSTX-U

Unique Studies of H-mode Physics at $A \sim 1$

- H-mode plasmas with pedestal diagnostic access
 - Standard characteristics: pedestal; low D_{α} ; increased τ_e ; $H_{98} \sim 1$
- Features unique to low-A emerging
 - Strong P_{LH} threshold scaling with A
 - Insensitivity to magnetic topology
- Operating regime allows detailed ELM studies
 - Nonlinear ELM dynamics on Alfvénic timescales
- PEGASUS-U planned to address critical physics, technology issues
 - Nonlinear ELM, pedestal physics with local edge diagnostics
 - Comprehensive 3D-MP and J_{edge} injection for ELM migitation / control
 - Tests of LHI at NSTX-U relevant field, pulse length

BACKUP

3D-Magnetic Perturbation System Proposed

Design study, fabrication as proposed work

Comprehensive 3D-MP system

- LFS coils, spaced with ~equal-PEST angle from model equilibria
 - 12 toroidal x 7 poloidal array
 - Initial DC power systems for n=3 control
- HFS 4-fold helical coil set

Uniqueness

- Wide spectral range
- Local pedestal plasma response measurements

3D Edge Current Injectors Support ELM Studies

- Local helicity injection system provides 3D SOL current injection
 - $I_{inj} \le 5 \text{ kA}, J_{inj} \sim 1 \text{ kA/cm}^2$

- LHI use with H-mode studies
 - Pulse extension and J(R) control

- LHI system affects edge plasma
 - Strong 3D edge current perturbation
 - Similar to LHCD on EAST¹
 - Edge biasing to modify rotation profiles

Pegasus-U LHI Injector Configuration

(a) Present injector cross-section; (b) proposed new injector design.

- Four, large-A_{inj} injectors
 - $-2 \text{ cm}^2 \rightarrow 4 \text{ cm}^2$
 - LFS, HFS locations
 - Modest P/S devel. for longpulse
 - e.g. cathode-spot quench interrupter circuit
- Supports confinement, scaling studies for NSTX-U

Ohmic H-mode Plasmas Have Standard Signatures

- Quiescent edge
 - Edge current, pressure pedestals
- Reduced D_a emission
- Large and small ELMs
- Bifurcation in φ_D
 - Correlates with improving τ_e

