18th International Sperical Torus Workshop (ISTW 2015) Princeton University, 3-6 Nov. 2015

Toroidal Alfven eigenmodes driven by runaway electrons during minor disruptions in SUNIST ohmic plasmas

<u>Zhe Gao* (</u>Tsinghua University), Yangqing Liu, Yi Tan, and the SUNIST team

supported by NSFC (11261140327, 11325524, and 11475102), MOST of China, (2013GB112001 and 2013GB107001) and Tsinghua.

* Email: gaozhe@tsinghua.edu.cn

Alfven Eigenmodes (AEs)

- AEs (typically, TAEs) are important in burning plasmas
- TAEs can be excited by energetic ions: firstly observed in TFTR (Wong 1991)
- Also by fast electrons: firstly in Compass-D (Valovic 2000)

Device	Heating and power	MHD type	Mode character	Energy	Reference
Compass-D	ECRH, <1.3MW	TAE	<i>m/n</i> =1/1? <i>f</i> ~250-450kHz	10-100keV	Valovic, 2000
C-Mod	LHW, <1MW	TAE	<i>n</i> =1-6, <i>f</i> ~200-800kHz	40-100keV	Snipes, 2008
HL-2A	ECRH, 0.4-1.5MW	Fishbone, BAE	$m/n = 1/1$, $f \sim 5-15$ kHz; $m/n = 3/1$, $f \sim 10-25$ kHz	30-70keV	Chen, 2009,2010 Ding, 2013
LHD	ECRH, ~3MW	BAE or BAAE?	<i>n</i> =1,2, <i>f</i> ~10-20kHz	60-300keV	lsobe, 2015

The SUNIST device

Main parameters

- Major radius (R₀): 0.3 m
- Minor radius (a): 0.23 m
- Aspect ratio: ~ 1.3
- Elongation: ~ 1.8
- Toroidal field at R_0 : < 0.15 T
- Plasma current: ~ 50 kA
- Pulse duration: < 20 ms (Ohmic)</p>
- n_e: 0.1 ~ 3×10¹⁹ m⁻³
- T_e: ~ 100 eV
- No NBI, No ECH and No other waves injection in this exp. We have only runaway electrons.

Outline

- Observation of high frequency MHD during minor disruptions
- Identification of TAE
- Driving mechanism
- Summary

Diagnostics: High Frequency Magnetic Probes

• Frequency response > 2 MHz

Liu Y.Q., RSI, 2014

Diagnostics: HXR and interferometer

CdZnTe HXR detector

- 10keV-1.3MeV
- Forward & backward direction

Microwave interferometer

- 94GHz
- Horizontal path

Typical discharge with minor disruption in SUNIST

MHD activities during minor disruption

MHD (m=-3/n=-1,f~26kHz) grows → mode locking
→current quench → HF MHD burst & RE plateau

Repeatable behaviors during several minor disruptions in one shot

- Spiky loop voltage
- High HXR burst
- Density ↓, frequency

Mode characters: frequency

• f~150-300kHz

double freq. due to NL coupling

Mode characters:structure

• n=-1, -3>m>-4

Ballooning character

Parameter dependences

TAE calculation

• TAE calculated by AMC code

Xie, PoP 2015

- *f*=234kHZ
- Agree with experimental results

Excitation of the TAE

- Ohmic plasma, no fast ions
- Mode in electron diamagnetic direction
- Only observed during minor disruption (high loop voltage spike, HXR burst, RE plateau)

Discharge without TAEs

IREs dominant discharge

- Relative low loop voltage spike
- Slight HXR burst
- No runaway electrons
- High frequency MHD: 40-200kHZ, no Alfven scaling; 4/1 dominant

Excitation of the TAE

- Ohmic plasma, no fast ions
- Mode in electron diamagnetic direction
- Only observed during minor disruption (high loop voltage spike, HXR burst, RE plateau)
- TAE driven by RE?

RE generation

- Primary (Dreicer) generation dominates in SUNIST
 - Secondary avalanche multiplication ~e^{0.05}
 - Runaway E_{\parallel} roughly proportional to n_e , $E_D = n_e e^3 \ln \Lambda / (4\pi \epsilon^2 T_e)$
 - Te assumed constant during minor disruption ~60eV

Time Evolution during MD

- Appears in current quench phase with duration time ~20-60 μ s
- Possible dynamics

 V_L spike \rightarrow high energy e (HXR) \rightarrow TAE excitation \rightarrow HXR degrade \rightarrow TAE damped

- Effective HXR burst is above 2keV (maximum 30keV at first burst)
- During the RE plateau after TAE, no high energy HXR burst

Possible mechanisms

• Precession drift resonance $\omega \sim \omega_{pd}$

$$T_{\rm h}({\rm keV}) \sim 1.1 \times 10^{13} \frac{B^2({\rm T})}{\sqrt{n_{\rm i}({\rm m}^{-3})}} \frac{r_{\rm s}({\rm m})}{|n|q^2}$$

- Bounce resonance with TAE
 - generation of REs →the distortion of F_e near the trapped to passing boundary → bounce frequency of electrons resonance with TAEs [From F. Zonca]

Summary

- A kind of high frequency MHD mode observed during minor disruptions in SUNIST ohmic plasma
- The mode is identified as the TAE from its frequency, mode structure and parameter dependence
- The TAE is though to be induced by high energy RE from minor disruption, although the exact mechanism is still open
- More theoretical and experimental efforts needed to interpret these observations.
- The excitation of TAE mitigates the RE...

High frequency MHD during disruptions in other devices?

Device	Heating and power	MHD type	Mode character	Energy	Reference
TEXTOR	Runaway electron	TAE?	200kHz; 80kHz	No data	Zeng 2013 Zeng 2014 Papp 2014
TUMAN-3M	Runaway electron	AW (not TAE)	1MHz	No data	Tukachinsky 2014

Thanks for your attention.