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Plasma start-up with a 28GHz 

gyrotron and 8.2GHz klystrons  



Fully Non-inductive Current Drive Experiments using 28 GHz and 
8.2 GHz Electron Cyclotron Waves in QUEST 

Plasma current of 54 KA was non-
inductively sustained  for 0.9 sec
by only 28 GHz injection.

Plasma shaping was almost kept for  
1.3 sec.

Higher current of 66 kA was non-
inductively obtained by slow ramp-
up of vertical field also.

54 kA Plasma Sustainment in Low Aspect Ratio Configuration by 28GHz Injection

Spontaneous density jump across the cutoff 
density was observed in superposed 28 and 
8.2 GHz injections.

Ha intensity was kept, magnetic axis Rax and
minor radius a were slightly decreased 
in the density jump case. 

Plasma current Ip was once decreased, but was
recovered after the plasma shaping became
more stable.

Over Dense Plasma Sustainment by 28 /8.2 GHz Injections after Spontaneous Density Jump

Non-inductive high current plasma start-up by 2nd ECH/ECCD has been demonstrated.
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EFIT 

Experimental proof of EBWH

[8.2 GHz + 28 GHz]

8.2 8.2

28 GHz
2nd ECR

8.2 GHz
1st ECR

8.2 GHz
2nd ECR

N//~4

In low density, 8.2 GHz 1st can 
work around  the plasma center. 
(see a left red circle) Effective ECH 
In higher density, 8.2 GHz 1st can 

also work well at the shifted plasma 
center. (see a right red circle) 
N//~4 EBWH Large Shafranov Shift

R0~0.8m



8.2GHz microwave is still difficult to reach 
UHR for EBWCD in low density
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Typical waveforms of a slow oscillation from 20 

to 30 Hz has been observed in 28GHz+8.2GHz.

• The oscillation of 20-30 Hz 

took place in the plasmas with 

combination of 28GHz and  

8.2GHz.

• Both Ip and ne oscillate in the 

same frequency which is 

comparable to current 

diffusion time. 

8.2GHz

28GHz
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The 2D SXR camera can catch the modification  of 

the core plasma. 
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Viewing area of 

the camera
The position of  the intense SXR 

signal repeats to expansion and 

shrink.
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The oscillation is relating to modification of LCFS and 

starts to shrink it around 2nd resonance of 8.2 GHz.
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• The intense SXR was 

emitted  from 2nd ECR 

layer of 28GHz and spread 

with the expansion of last-

closed flux surface.

• The SXR oscillation can be 

partially explained by the 

modification of LCFS.  

-18

Two green lines show  a location of a second 

harmonic resonance layer of 28GHz at R=32cm 

and a fundamental resonance layer of 8.2GHz at 

R=54cm
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LCFS

LCFS is likely to expand to low filed side 
and starts to shrink when it looks to 
reach 2nd resonance  of 8.2GHz. 



Spontaneous rotation and 

Flow reversal
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Spontaneous toroidal rotation was observed in higher 
mirror ratio configuration. 

QUEST Advanced Fusion Research Center

In particular configuration (high mirror ratio) co-current toroidal flow is found to be generated by a hidden 
torque without closed magnetic surfaces. The sign and magnitude depend on the sign of Bz and Bz/Bt.
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Strong gas-puff induces modification of plasma rotation 
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Top view Gas puff
QUEST Advanced Fusion Research Center

Intrinsic rotation has been 
investigated using passive 
line HeII, CIII emissions 
both in toroidal & poloidal 
direction with a visible 
spectrometer attached 
with 25 channel fiber array.

Flow shear is formed 
near the edge in the low 
density regime. A rigid 
rotation in the ctr-
direction is triggered by 
intense density rise and 
the relaxed to the co-
direction rigid rotation.



Spontaneous rotation can maintain during  SSTO of 

Non-inductive Plasma

Co-current toroidal (20km/s)& 

ion diamagnetic poloidal (1km/s)flows 
Fully NI plasma sustained by FB control

of recycling flux

Two shots (for rotation measurements) are presented.

Puff width(amount of H2) is fixed, the repetition frequency is FB controlled

to keep Ha constant

QUEST Advanced Fusion Research Center



Poloidal rotation reversal was observed relating gas 
puffing and the effect becomes to be week in R~1

QUEST Advanced Fusion Research Center
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Hydrogen recycling during  

long duration discharges
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Wall property for H storing is significantly  affected 
by the presence of deposition layer 
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Deposition profile was decided by TRIM calculation based 
on TEM & GD-OES measurement
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Nuclear reaction analysis can indicate the presence of H 
barrier between deposition layer and substrate.
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QUEST wall model can reconstruct micro and macroscopic 
observations. 
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Wall temperature dependence can be reconstructed by 
QUEST wall model. 

 

Wall stored particle is decided by only fuel flux to the wall.

Wall stored fuel

Evacuated fuel

QUEST Advanced Fusion Research Center



Hot wall installation and 
its impact to plasma. 
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Hot wall has already prepared.

Hot wall

Heater

Cooling panel

Radiation
Shield

Vacuum Vessel

Thermal
Isolator

Some cooling channels will be installed on the vessel

2015 Summer
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Hot wall installation and its impact to the plasma 
parameters  

The hot wall has been installed since 2014.

QUEST Advanced Fusion Research Center
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A long duration discharge for ~ 1000 s with R>1 was 
obtained.
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Very long discharge of 1000 s with Ip can be maintained without gas-puffing. It means 
that all the fuel hydrogen can be supplied from the wall recycling.  
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Advanced Fueling

CT injection on QUEST
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CT injection experiment for advanced fueling in ST 
with Thomson scattering system on QUEST  

• CT parameters at Vct.acc. of 16 kV～30 kV
> vct : 170 km/s - 250 km/s，
> nct : 3×1021 m-3 - 7×1021 m-3

（Vbias = 0.8 kV, Vform. = 17 kV, tacc. = 3ms）

JFT-2M

BT=0.8 T

WB = 255 kJ/m3

QUEST

BT = 0.5 T

WB = 99 kJ/m3

for a pulse 
mode

• CT injection experiment has been performed in

collaboration between Kyushu Univ. and Univ. of Hyogo

with the support and under the auspices of the NIFS

Collaboration Research Program.

• The UH-CTI, which was designed for central

fueling in the JFT-2M tokamak, has a sufficient

performance to penetrate a CT plasma deeply

into a ST plasma on QUEST.

• The kinetic energy

density of the CT

exceeds the magnetic

field energy density

of the target plasmas.

QUEST Advanced Fusion Research Center



Te and ne at the only peripheral region change just after the 

CT injection to an Ohmic plasma (Ip~30 kA)

Temperature and density profiles 0.5 ms after CT injection

With and without CT injection

 Quick (0.5 ms) temperature decrease and 

density increase at the peripheral region.

 Slow (<100 ms) density increase at the 

whole region.

QUEST Advanced Fusion Research Center

t = 1.6 s t = 1.7 s

w/o CT

with CT

Tangential camera view
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Summary

• Plasma current start-up can be obtained up to 66 kA with 2nd

ECCD of 28 GHz. The 2nd ECR of 8.2 GHz significantly disturb 
plasma current increment.

• Magnetic configuration (M>2) can produce toroidal rotation 
spontaneously and a strong gas puffing make a flow reveal.

• High recycling plasma (R~1) cannot make a response of flow 
reversal induced by gas puff.

• Micro-scopic observation can be reconstructed by a model with 
hydrogen barrier and the model can predict a time evolution of 
recyecling ratio during long duration discharges.

• Compact toroid (CT) injection is successfully demonstrated as an 
advanced fueling and its deposition at the peripheral region can 
be detected by timing-adjusted  Thomson scattering.



Future Plan of QUEST

Hot wall

Improvement of controllability of wall-pumping

Dependence of wall-pumping

rate on wall temperature in

QUEST long duration plasmas

QUEST wall model decided by

reconstruction of TDS after D2
+

ion implantation
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