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Motivation

• RWM is a kind of external kink instability, which needs to be 
suppressed in advanced tokamak, such as ITER.

• The devices, such as ITER, NSTX-U, will have low collisionality
operation, with different rotation levels. 

• The role of  thermal particle collisionality on RWM requires 
further investigation, based on the self-consistent computation. 
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Obtain the dispersion relation from an energy principle
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Dispersion relation:

Perturbed potential energy

without wall :

Kinetic contribution from 

thermal particles:

Perturbed potential energy

with ideal wall localized at b:

Y.Q.Liu,et.al. PoP,2008, 

S.X.Yang,et.al. PoP,2015 

Drift freq. Rotation 
collisionality

Mode eigenvalue

Resonance factor Q 4
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( )Im KWδ Always have stabilization on the instability 

Obtain the dispersion relation from an energy principle



Collisionality model used in theory model 

• Energy-independent model 

• Energy-dependent model 

Two simple collisionality models: 
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Mode-particle resonance destabilizes a new branch
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Growth rate Real frequency 

• W/O kinetic effect, normalized growth rate of RWM ~3.5, labeled by blue solid circle

• Growth rate is sensitivity to the plasma rotation in the gray region, since the 

resonance between the mode and precession drift motion of trapped thermal ions

• The mode-particle resonance can stabilize branch A, however, also trigger branch B 

as rotation exceeds a critical value.

• Here, no collisionality is included. We assume flat plasma rotation.

• Branch A with higher real frequency which is close to plasma rotation frequency

• Branch B with lower real frequency which decreases as increasing plasma rotation

Eddy current decay time of resistive wallwτ

Branch A

Branch B

Branch A

Branch B
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Eigenvalue of two branches depends on the 

mode-particle resonance 

3

0 0.2 1.2 10ds Aω ω ω−= = ×Choose rotation : 

• profile of branch A is very different with that of branch B,  which is related to the  

mode-particle resonance. 

• Branch A has larger             and smaller                , which in turn determines the lower growth 

rate and larger real frequency of Branch A, though the RWM dispersion relation. As a 

analogy, Branch B has larger growth rate and smaller real frequency.

• For Branch A, profile of precession drift frequency of particles in pitch angle space has a 

dominant effect on profile of 

kWδ

Branch B

Branch A

Re( )kWδ
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precession drift frequency profile in pitch angle space 
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At given minor radius, precession drift frequency changes its sign at a certain value of 

pitch angle. For the branch with higher frequency(Branch A ), this profile of drift 

frequency  strongly enhances                , and reduces             , which in turn contributes 

damping on the mode.
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Collisionality can be either stabilizing or destabilizing
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3

0 1.2 10 Aω ω−= ×Choose rotation : 

black curve: energy-dependent collisional model 

Blue curve: energy-independent collisional mode 

Branch B

Branch A

• For branch A: collisionality has stabilization effect on the mode 

• For branch B: collisonality has destabilization influence on the mode

• The above effects are insensitive to the choice of the collisionality model 

• Collisionality can be either stabilizing or destabilizing, depending on the 

value of mode frequency and plasma rotation. 10



Collisionality can be either stabilizing or destabilizing
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• With increasing collision frequency, the two branches shown in slide 7 merge 

and form two new branches.

• Collison frequency  contributes destabilization effect on upper branch(blue 

curve); however, has stabilization effect on the lower branch 
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• The merge and re-form of branches are insensitive to the collisional model

• The behavior of RWM , with varying plasma rotation, is rather different depending on the 

collisional regime

• In the low collisional regime, the plasma flow significantly stabilizes one branch, while 

destabilizes another one .

• At high collisionality, the plasma rotation does not generally change the stability of either 

of the branches. 

Red arrow: increase of plasma rotation 
S.X.Yang,et.al.POP, 2015

Collisionality can be either stabilizing or destabilizing



Numerical results from MARS-K code

Single MHD:

Kinetic contribution 

from particles: 
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Basic formulations: 

MARS-K: full toroidal geometry, self-consistent computation of 
the kinetic effect of the particles  on MHD instability effect 



Numerical results consistent with analytical results
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• w/o collisionality, there exist two branches when plasma flow exceeds a 

critical value

• Collisionality stabilizes the lower branch, but destabilizes  the upper one
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Collisionality globaly affect the mode structure  
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Upper branch Lower branch

For upper/lower branch, collisionality slightly pushes the mode perturbation to the 

core/edge plasma region



Summary 
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� The resonance  between the mode and precession drift frequency of trapped 

thermal ions is stabilizing; however, the resonance destabilizes a new branch 

when the rotation exceeds a critical value

• Collisionality can be either stabilizing or destabilizing, depending on the value of 

mode frequency and plasma rotation.

� In the low collisionality regime, plasma flow stabilizes one branch but 

destabilizes another

� The numerical results of full toroidal, self-consistent computation using MARS-K 

confirms the main conclusion of analytical model

� The main conclusion is still kept, when electron kinetic effect is included.

� The results expand the zoology of RWM behavior in low collisionality tokamaks

such as NSTX-U


