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Motivation for Current Density Profile Control in NSTX-U

@ There is growing consensus that the path to an economical
power-producing reactor is the “Advanced Tokamak” (AT) concept.
@ AT operational goals for the NSTX-U include [1]:

— Non-inductive sustainment of the high-g spherical torus.

(Fusion power scales as Py, ~ 5°B*)
— High performance equilibrium scenarios with neutral beam heating.
— Longer pulse durations.

@ Active, model-based, feedback control of the current density profile
evolution can be useful to achieve these AT operational goals.
@ Relation between .-profile and the toroidal current density (j,) profile [2]:
. Ropo [P ./ o dv
Wp,t) = ASBO / Jo(p',0)p'dp" = 73
P~Bgy Jo N ,
—(0/0p)/Bg 0pph

@ Control of the -profile is equivalent to control of the current density
profile, j4 (5, 1), and the control of the poloidal flux gradient profile, 9v/9p.

[11 GERHARDT, S. P, ANDRE, R., and MENARD, J. E., Nuclear Fusion 52 (2012).
[2] J. Wesson, Tokamaks (Oxford University Press, 3rd edition, 2004).
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First-Principles-Driven (FPD) Current Profile Modeling
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First — Principles — Driven (FPD) Current Profile Evolution Model

@ The evolution of the poloidal magnetic flux is given by the Magnetic
Diffusion Equation [3]

oy n(T) 10 < 81#) - <jni-B>

- = pD + RoHn(T,) ———-—, 1

o~ o2 pop\""" 0 oHTe) Bs.0 M
with boundary conditions

. - @)

dp =0 dp p=1 ZWG‘A H‘

where D, (p) = F(p)G(p)H(p), and F, G, H are geometric factors
pertaining to the magnetic configuration of a particular equilibrium.

[31 OU, Y., LUCE, T. C., SCHUSTER E. et al., Fusion Engineering and Design (2007).
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First-Principles-Driven (FPD) Current Profile Modeling

@ NSTX-U-tailored [4] empirical models [5] for the electron temperature,
electron density, plasma resistivity, and noninductive current drives [6]
take the form

ne(ps 1) = nl"™ (p)uy (1) (3)
rof (
72(000) = k) "o L 10) P @
n(r) = W ©
Jlu -B <]nbt, B> <jbs : B>
By Z By o Byo

=1
St T

on, oT,
> {2£31T PE +{2£31+E32+a£34}ne BE (6)

+ kJeVRO (3¢
F(p) \ 9
[4] ILHAN, Z. O. et al., 55" Annual Meeting of the APS DPP (2013)

[5] BARTON, J. E. et al., 52" IEEE CDC (2013)
6] SAUTER, O. et al., Physics of Plasmas (1999), (2002

Z. llhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 4/28



Possible Uses of the FPD Model
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Feedforward Actuator Trajectory Optimization

@ Objective: Design the actuator trajectories that can steer the plasma to a
target state characterized by the safety factor profile ¢"(p, #;) or rotational
transform profile . (p, t;) at a specified time #; during the discharge such
that the achieved plasma state is as stationary in time as possible.

@ Cost functional defined as:

[9(5) = kel (1) + kooJos (1) |

where k,, and k, are the weight factors representing the relative
importance of the plasma state characteristics and

Jo(ty) = / Wo () 14" (5) — a(p, 1)) dp (7)
Julty) = / Wes(9) 85 (5. 11)F i, ®)
where W,(p) and W (p) are positive weight functions and
., oy, Lov oy
8ss(Py1) = % o 2 (9)

where U, is the loop-voltage profile which can be related to the temporal
derivative of the poloidal magnetic flux.
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Formulation of Various Constraints

@ Actuator Trajectory Parametrization: The trajectories of the i-th control
actuator (u;) can be parametrized by a finite number n,, of
fo-be-determined parameters (x;) at discrete points in time (z,,), i.e.,

= [t1, By ooy By ty, = tf] €R™

ny.
xi=[u},uf,. . uf,. . u"] € R™
@ Combining all parameters to represent individual actuator trajectories into
the vector ¥, where X € R and ni' = "7 n,,, the control actuator

trajectories can be written compactly as
u(r) =T()x (10)

@ Actuator Constraints: The actuator magnitude and rate constraints are

iven b min max
given by I <I,(r) < I,
P"”'” <Pi(t) S P™ Qi=1,... 0
p max <d1p/dt <] p max?
@ The above actuator constraints can be written compactly as a matrix
inequality as
q y Altm < bltm (1 1)
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Statement of the Optimization Problem

@ The optimization problem is written mathematically as

min J(tr) = J(0(tr), 0(zr)), (12)
such that
0 =g(0,u), (13)
u(t) = (1%, (14)
A% < b (15)

where the poloidal flux gradient, ¢ = di/dp represents the plasma state,
u represents the actuators, and g is a nonlinear function representing the
plasma dynamics as an additional constraint ((13) is derived from (1)-(6)).

@ The optimization problem (12)-(15) can be solved iteratively in MATLAB
by using the Sequential Quadratic Programming (SQP) method [7].

[7] J. Nocedal and S. J. Wright, Numerical optimization, (Springer, New York, 2006).
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Feedforward Optimization: Weighting only the g-profile

@ For this application, k, = 1 and k, = 0 in the cost functional.
@ The goal is to hit a target ¢-profile at 7, = 1 sec.
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Time evolution of the optimized feedforward actuator trajectories
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Feedforward Optimization: Weighting only the g-profile

@ Comparison of the target and achieved g-profiles at various times:
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@ Time evolution of the safety factor at various radial locations:
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Feedforward Optimization: Weighting only Steadiness

@ For this application, k,; = 1 and k, = 0 in the cost functional.
@ The goal is to maintain a steady ¢-profile throughout the simulation.
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Feedforward Optimization: Weighting only Steadiness

@ Comparison of the target and achieved g-profiles at various times:
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@ Time evolution of the safety factor at various radial locations:
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Feedforward Optimization: Weighting ¢ + Steadiness

@ For this application, k,, = 1 and k, = 1 in the cost functional.

@ The goal is to hit a target ¢-profile at : = 0.5 sec. and maintain it
throughout a 3 sec. simulation.
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Feedforward Optimization: Weighting ¢ + Steadiness

@ Comparison of the target and achieved g-profiles at various times:
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Optimal Feedback Control of the Current Density Profile

@ Linear-Quadratic-Integral (LQI) Optimal feedback controller has been
designed in MATLAB based on the FPD, control-oriented model.

@ The effectiveness of the designed controller is first tested in MATLAB by
simulating the nonlinear magnetic diffusion equation (1).

@ Early results on control design and numerical testing have been
presented in [8], [9].

@ The proposed feedback controller is now implemented in TRANSP for
performance assessment before experimental testing in NSTX-U.

@ Recently developed Expert routine [10] provides a framework to perform
closed-loop predictive simulations within the TRANSP source code.

[8] ILHAN, Z. O. et al., 56" Annual Meeting of the APS DPP (2014)
[9] ILHAN, Z. O. et al., IEEE Multi-Conference on Systems and Control (2015)
[10] BOYER, M. D., ANDRE, R., GATES, D. A,, et al., Nuclear Fusion 55 (2015)
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Closed-Loop Control Simulation Study in TRANSP

@ The control objective is to track a target state trajectory «.(p, r) with
minimum control effort.

@ The target state trajectory «,(p, 7) is generated through an open-loop
TRANSP simulation with the following constant reference inputs.

n.(m3) [ 5.0 x 107 Py(W) [ 0.8 x 10°
P;(W) [0.2x10° Ps(W) | 1.0 x 10°
P,(W) [ 0.4 x 10° Ps(W) | 1.2 x 10°
P3(W) | 0.6 x 10° I,(A) [ 0.7 x 10°

@ Starting from the first second of the simulation, the controller is tested
against perturbed initial conditions and constant input disturbances, i.e.,

u(t) U, + iy, t<l1s.
T o ug+ Au(r), t>1s.

where u, represents the constant reference inputs, «, stands for the
constant disturbance inputs (15% for 1,, 10% for P;, P3, Ps and Pg), and
Au(t) is the output of the feedback controller.
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CASE 1: Actuation with 7, and Neutral Beams

CASE 1A CASE 1B
(without I, rate saturation) (with 1, rate saturation)
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Figures (left & right): Time evolution of the optimal outputs (solid) with their respective targets (dashed).
Controller is off in the grey region.
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CASE 1: Actuation with 7, and Neutral Beams

CASE 1A CASE 1B
(without I, rate saturation) (with 1, rate saturation)
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Figures (upper left & right): Time evolution of the optimal beam powers.
Figures (lower left & right): Time evolution of the optimal plasma current.
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CASE 1: Actuation with 7, and Neutral Beams

CASE 1A CASE 1B
(without 7, rate saturation) (with I, rate saturation)
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Figures (left & right): Time evolution of the rotational transform (.-profile).
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CASE 2: Actuation with n,, I, and Neutral Beams

CASE 2A CASE 2B
(without 1,&n, rate saturation) (with 1,&n, rate saturation)
0.7 - = =1(p=01) - = -1(p=0.1)
—1(p=0.1) —1(p=0.1)
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Figures (left & right): Time evolution of the optimal outputs (solid) with their respective targets (dashed).

Controller is off in the grey region.
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CASE 2: Actuation with n,, 1, and Neutral Beams
@ CASE 2A (without I,&n, rate saturation)
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@ CASE 2B (with 1,&n, rate saturation)
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Figures: (left) Time evolution of the optimal line-averaged electron density, (center) time evolution of the optimal
plasma current, and (right) time evolution of the optimal beam powers.
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CASE 2: Actuation with n,, I, and Neutral Beams
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Figures (left & right): Time evolution of the rotational transform (.-profile).
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CASE 3: Control Against Changing Confinement Factor

@ In predictive TRANSP simulations, n, and 7, profile evolutions are not
modeled by first-principles calculations. [11]

@ A reference n, profile is specified based on an experimental profile
measured on NSTX and then scaled to achieve a particular Greenwald
fraction, fow.

@ Similarly, T, profile is also taken from an experiment and scaled to
achieve a particular global confinement time [12]

0.57 p1.08 044 0.73
TST —H5T0 11781 B PLOSSth

@ When performing closed-loop simulations in TRANSP, the simulation
must be constrained to follow a specific confinement level all the time
although the actuators are varied based on the calculations of the
feedback controller = This is achieved by manipulating the confinement
factor Hgy through a user-defined waveform. [13]

@ However, the Hy; factor can deviate from the user-supplied waveform in
the NSTX-U experiments = creating additional source of disturbance.

[11] GERHARDT, S. P, ANDRE, R., and MENARD, J. E., Nuclear Fusion 52 (2012).
[12] KAYE, S. et al., Nuclear Fusion 46 (2006).
[13] BOYER, M. D., ANDRE, R., GATES, D. A., et al., Nuclear Fusion 55 (2015).
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CASE 3: Control Against Changing Confinement Factor

@ Two closed-loop TRANSP simulations are carried out to verify
disturbance rejection against changing confinement factors:

o Run 142301B66 has a step increase in the Hsr from 0.75 to 1.25.
@ Run 142301B67 has a step decrease in the Hgr from 1.25 t0 0.75.

@ Note that the target profile corresponds to the open-loop run 142301W20,
which has Hgr =~ 1 when ¢ € [1 5] s., during which the controller is on.

@ Only J, and neutral beams are used as actuators without considering rate
saturations.

IS

—— 142301W20 (default Hh)
- = =142301B66
-~ 142301B67

e

-
s

Confinement Factor (Hh)
N

o

time (s.)
Time evolution of the confinement factors.
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CASE 3: Control Against Changing Confinement Factor

CASE 3A CASE 3B
(increasing Hsr - 142301B66) (decreasing Hgr - 142301B67)
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Figures (left & right): Time evolution of the optimal outputs (solid) with their respective targets (dashed).
Controller is off in the grey region.
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CASE 3: Control Against Changing Confinement Factor

CASE 3A
(increasing Hsr - 142301B66)
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Figures (upper left & right): Time evolution of the optimal beam powers.
Figures (lower left & right): Time evolution of the optimal plasma current.
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CASE 3: Control Against Changing Confinement Factor

CASE 3A CASE 3B
(increasing Hsr - 142301B66) (decreasing Hgr - 142301B67)
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Figures (left & right): Time evolution of the rotational transform (.-profile).
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Conclusion and Future Work

@ A nonlinear, control-oriented, physics-based model has been proposed to
describe the evolution of the poloidal magnetic flux profile, which can be
related to the g-profile (c.-profile) = the current density profile.

@ Using this first-principles-driven (FPD), control-oriented model, a
two-component control design approach has been proposed for the
regulation of the current density profile:

@ A feedforward trajectory optimizer (controller) to compute offline actuator
requests to achieve specific plasma scenarios.

@ A feedback control algorithm to track a desired current density profile while
adding robustness against model uncertainties and disturbances to the
overall current profile control scheme.

@ The performance of the feedback controller has been validated in
TRANSP simulations through the recently developed Expert routine,
which provides a framework to perform closed-loop predictive simulations
within the TRANSP source code.

@ The immediate next step is to test the feedforward actuator trajectory
optimizer in TRANSP and then in the actual NSTX-U machine.

@ A longer-term next step is the implementation of the feedback controller
in the NSTX-U PCS with the ultimate goal of experimental testing.
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