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Background 
• following a series of events in FY16, NSTX-U were instructed to: 

“Complete an extensive extent-of-condition review of NSTX-U to 
identify all design, construction, and operational issues.” 

• process revealed concerns w/ existing plasma facing components 

– could not meet combined halo current and heat flux requirements 

– concern that these requirements did not reflect present physics 
understanding 

• heat exhaust previously identified as a challenge for NSTX-U 
[Menard NF 2012], but solutions (snowflake, radiation) had uncertainty  

• NSTX-U established a dedicated Working Group to combine 
physics and engineering experts to support PFC design activities 
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Background 
NSTX-U post-FY16 ops 

presentation focuses on the 

high heat flux (HHF) regions 

of the inner/outer divertor 
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• simulation workflow to quantify the PFC heat flux 

• methods to mitigate high heat flux 

– poloidal flux expansion and strike point sweeping 

• design of tiles to support high performance scenarios and 

broad physics program 

– stress analysis in chosen castellated tile design 

– impact of PFC surface shaping to hide leading edges 

Overview of Presentation 
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Example of Workflow 

• compute equilibrium (Ip, BT, PNBI) 

• radiated power fraction and power sharing 
between divertors assumed 

• 𝜆𝑞assumed, defines upstream parallel heat 

flux, 𝑞 = 𝑞∥ 𝐵 |𝐵|  

• 𝑞∥ mapped from upstream to PFC surfaces 

–  𝛻 ⋅ 𝑞 = 0 results in 𝑞∥/𝐵 constant 

• diffusive spreading (𝑆) into PFR (Eich model) 

• find impact angle sin 𝛼 = 𝐵 ⋅ 𝑛  

• compute surface heat flux, 𝑞𝑝𝑒𝑟𝑝 
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Example of Workflow 

I-DIV Requirement 

O-DIV Requirement 

• compute equilibrium (Ip, BT, PNBI) 
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between divertors assumed 
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• 𝑞∥ mapped from upstream to PFC surfaces 

–  𝛻 ⋅ 𝑞 = 0 results in 𝑞∥/𝐵 constant 

• diffusive spreading (𝑆) into PFR (Eich model) 

• find impact angle sin 𝛼 = 𝐵 ⋅ 𝑛  

• compute surface heat flux, 𝑞𝑝𝑒𝑟𝑝 
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three scalings of heat flux width, lq, with eng. parameters 

• Heuristic Drift Scaling [Eich, PRL 2011]:      

(7), (9-10) results in 𝝀𝒒 ~ 𝑩𝑻
−𝟕/𝟖

𝒒𝒄𝒚𝒍
𝟗/𝟖

 

• MAST scaling [Thornton, PPCF 2014]: 

𝜆𝑞 𝑚𝑚 = 1.84 ±0.48 𝐵𝑝𝑜𝑙,𝑜𝑚𝑝
−0.68(±0.14)

𝑃𝑆𝑂𝐿
0.18(±0.07)

 

• Eich Scaling [Eich, NF 2013]: 

𝜆𝑞 𝑚𝑚 = 1.35휀0.42𝑅𝑔𝑒𝑜
0.04𝐵𝑝𝑜𝑙,𝑜𝑚𝑝

−0.92 𝑃𝑆𝑂𝐿
−0.02 

Use Conservative Approach: Assume Narrow lq 

 

1.9 [mm] 

 

4.1 [mm] 

 

3.0 [mm] 

 

2 MA, 1 T, 10 MW 

Scenario 

NSTX-U PFC Requirements developed 

assuming Heuristic Drift Scaling  
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Stationary Horizontal Target Heat Fluxes 

max angle 

Dt ~ 1 sec 

Dt ~ 5 sec 

• many stationary LSN cases will not be possible even at short pulse 

w/o some kind of further mitigation 
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• increase poloidal flux expansion 
– changes the amount of wetted area on 

divertor, but also makes for shallow angles 

• strikepoint sweeping in time 
– use PF coils to move the strike point back 

and forth across the surface  

• increase radiation fraction          
(30% assumed in models) 

– contingency due to uncertainty  of 
compatibility w/ physics goals 

– adding new divertor fueling locations to 
help us exploit radiative exhaust 

Strategies for Mitigating Heat Fluxes 

Div. Temperature, Heat Flux 
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how we move on this 

plot is a research 

focus of the fusion 

program worldwide 
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• low-k shapes have x-point far from PFCs 

have useful scientific value (Fri. Guttenfelder) 

– Ip = 1 MA, PNBI = 3 MW L-mode 

– flux expansion < 3, field line angles > 10 deg 

– high stationary heat flux (> 6 MW/m2) 

• increasing kappa and moving x-point closer to 

targets can mean higher Ip, PNBI are ‘easier’ 

– IP=1.00 MA, BT=0.75  T, 7.5 MW:  qpeak  ~ 12 MW/m2 

– IP=1.25 MA, BT=0.75  T, 8.0 MW: qpeak  ~ 7 MW/m2 

• shape/heat flux coupling stronger in STs 

Elongation Impacts Use of Poloidal Flux Expansion 
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Initial Modeling of Sweeping Shows Benefits 

A 

B 

C 

A 

B 

C 

C 

Single Equilibrium 

Peak Across Scan 

Time Averaged 

assemble individual equilibria and interpolate 

2 MA 

1 T 

10 MW 

qperp 
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Initial Modeling of Sweeping Shows Benefits 

A 

B 

C 

Initial Findings 

• # and location of 

coils impacts ability 

to smoothly sweep 

• maximum time-

averaged heat flux 

less impacted by lq 

– 2.1 mm, qave ~ 4.5 MW 

– 4.3 mm, qave ~ 3.5 MW 

assemble individual equilibria and interpolate 

A 

B 

C 

qperp 
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HHF Tile Designs Converged to ‘Small Cubes’  

• larger tiles ‘bow’, enhancing stress, small cubes relieve this by ‘mushrooming’ 

• design criteria using Tlimit ~ 1600 oC, and allowable stresses of 50% material limit 

• scoping simulation show Tmax = 2100 oC, max compressive stress of 55.8 MPa 

(86% of allowable) and max tensile stress of15.4 MPa (51% of allowable) 

– example of design that is ‘temperature limited’ and not ‘stress limited’ 

 

compressive stress tensile stress temperature 

ANSYS simulation of 10 MW/m2 for 5 sec onto isotropic graphite at normal incidence 

30 mm 

40 mm 
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Developing Designs Using Castellated Tiles 

• designs working to 

avoid front-surface 

holes in HHF regions  

• side-access through 

removing low-heat 

flux tiles w/ front 

surface holes 

• ex: cam-like action 

secures tiles against 

mounting plate/vessel  

• beginning designs for 

inter/intra-tile 

diagnostics  

 
example vertical divertor 

cover HHF 

surfaces using 

100 mm x 100 

mm tiles made 

of 4 x 4 

castellated 

‘small cubes’ 
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Tile Shaping Used to Avoid Leading Edges 

β 

 

𝛼ℎ𝑒𝑎𝑡 
 

 

𝒘+ 𝒈 

exaggerated example  

𝝓  

tan𝛽 =
𝛿𝑧 + 𝑔 tan𝛼𝑚𝑎𝑥

𝑤
 

• small ramp toroidally, 𝛽~1𝑜 

– driven by max field line expected, 𝛼𝑚𝑎𝑥 

– impacted by alignment uncertainty, 𝛿𝑧 

• this reduces wetted area (increases 

𝐵 ⋅ 𝑛 ) : ‘enhancement factor (EF)’ 

• large pol. expansion leads to 

shallow attack angles, 𝛼ℎ𝑒𝑎𝑡 ~ 1
𝑜 

𝐸𝐹 ~ 1 +
sin 𝛽

sin 𝛼ℎ𝑒𝑎𝑡
 



19 ISTW 2017, M.L. Reinke, Sept. 20th, 2017 

• prior experiments on NSTX, DIII-D and TCV used flat PFCs 

• power sharing between strike points import 
– TCV sees ~25% of the power on SP3 on SP4 [Remierdes PPCF 2013] 

– this power approaches shaped PFCs ~ 90o making qsurf ~ q|| 

Desire Flexibility to Explore Snowflake Divertor 

poloidal field 

direction switches 

between legs 

 

SP4 = ‘outer leg’ 

SP3 = ‘inner leg’ 

SP4 

SP3 

Bp 

Frerichs PoP 2016 
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Analysis Shows PFCs May Tolerate ‘Snowflake Like’ Cases 
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Actual Incident flux
is Q/tan(1)

d=.010” (0.25 mm) 

qedge=115 MW/m2 

Dt = 5 sec 

 

d 

qedge=28 MW/m2 

qflat=0.5 MW/m2 

qedge=57 MW/m2 

qflat=1.0 MW/m2 

143 MW/m2 115 MW/m2 

thermal analysis shows heat conducted into PFC bulk allows substantial 

edge heating over small edges, allowing heat loads in ‘unfavorable’ directions 

qedge=qflat/tan(1o) 

Tlimit=1600 oC 

‘d’ constrained by field line 

angle and tile size 
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• new designs for NSTX-U high heat flux plasma facing 
components expected to support operations at full 
performance (2 MA, 1 T, 10 MW, 5 sec.) 
– updated halo current and heat flux specifications developed 

• scenarios using poloidal flux expansion and strike point 
sweeping have been analyzed 
– enhanced radiated power will be used as contingency 

• PFC designs based on ‘small cubes’ designs are expected 
to be ‘temperature limited’ instead of ‘stress-limited’ 
– PFC shaping being used to avoid leading edge heating  

 

Summary 
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EXTRA SLIDES 



23 ISTW 2017, M.L. Reinke, Sept. 20th, 2017 

PFC Requirements Derived from Science Team Input 

IBDH Case # -

> 

1 2 3 4 5 

Range of 

Application 

m 0.48 < R < 0.6 R < 0.6 R < 0.48 

Max Angle degrees 1.0 5.0 3.6 -1 4.0 

Min Angle degrees 1.0 1.5 3.6 -5 1.0 

Heat Flux MW/m
2 

7.0 5.5 14 1 3.5 

Duration sec 5 5 1 1 5 

Reference 

Scenario 

--- Stationary High 

Ip/Bt w/ large 
poloidal flux 

expansion 

(Table 5.1) 

High Ip/Bt Long 

Pulse Swept 
Case  

(Table 6.1) 

Stationary High 

Power Short 
Pulse (Table 

4.1.1) 

Reversed 

Helicity 
Requirement 

(Section 7) 

Spill Over 

From HHF 
Regions 

(Section 8) 

Table 2.1: Suggested heat flux requirements for the IBDH 
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Stationary Vertical Target Heat Fluxes 

max angle 

Dt ~ 1 sec 

Dt ~ 5 sec 

• developed multiple scenarios based on input from NSTX-U topical 

science groups on desired Ip, Bt, PNBI, shape, pulse duration 
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• NSTX only measured the outer, lower divertor heat flux 
– model uses inner/outer split of  70/30 LSN and 55/45 USN, smooth transition in-between 

Empirically Motivated Divertor Power Sharing 

MAST L-mode; Wenninger, IAEA 2016 

LOWER 

NULL 

UPPER 

NULL 

C-Mod H-mode; Brunner APS 2016 

http://nstx-u.pppl.gov/program/working-groups/pfc-requirements-working-group/software/w_pfc/wpfc_drsep.png?attredirects=0
http://nstx-u.pppl.gov/program/working-groups/pfc-requirements-working-group/software/w_pfc/wpfc_drsep.png?attredirects=0
http://nstx-u.pppl.gov/program/working-groups/pfc-requirements-working-group/software/w_pfc/wpfc_drsep.png?attredirects=0
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• mixed-material environment w/ 

time varying surface emissivity 

• characterizing the total PRAD 

– new NSTX-U diagnostics needed 

• real-time versus inter-shot? 

 

PFC Monitoring Challenges 
ex: from NSTX LLD 


