The main results of the 0.5 T Globus-M experiments

itute

N.N.Bakharev¹, V.V.Bulanin², F.V.Chernyshev¹, V.K.Gusev¹, N.A.Khromov¹, G.S.Kurskiev¹, A.D.Melnik¹, V.B.Minaev¹, M.I.Mironov¹, I.V.Miroshnikov¹, M.I.Patrov¹, A.V.Petrov², M.A.Petrov², Yu.V.Petrov¹, N.V.Sakharov¹, P.B.Shchegolev¹, A.D.Sladkomedova¹, V.V.Solokha¹, A.Yu.Telnova¹, V.A.Tokarev¹, S.Yu.Tolstyakov¹, A.Yu.Yashin²

¹ Ioffe Institute, St. Petersburg, Russia
² Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

19th International Spherical Torus Workshop, Seoul National University, 19-22 September 2017

Outline

- Introduction
- Energy confinement
- Fast ion confinement
- Alfvén eigenmodes
- Discharge disruption
- Radiation losses
- SOL Physics
- Summary

Introduction

New Globus-M2 power supplies were used in the last Globus-M experimental campaign:

B _t : 0.4 T I _p : 200 kA	→ 0.5 T → 250 kA	TS trap TS trap TS trap TOP view TOP view	1
New diagnostics: 4-ch Doppler Reflectometer, 2X24-channel and 16x16 SPD arrays, movable probe		<u>Poloidal</u> magnetic probes <u>Pyro-</u> bolometer <u>24x1 SPD</u> <u>Cas puffing</u>	
parameter	value	toroidal ME-SPD Vacuum pump	
R [cm]/a [cm]	36/24 = 1.5	probes ME-SXR SPD set	
k	≤ 2.0	Rogowski coil	ning
δ	≤ 0.5	video camera	<u>A</u>)-241
B _t , T	0.5	TS collecting system <u>16x16 SPD</u> <u>movable</u> Langmuir	
l _p , kA	≤ 250	Neutron flux probe Scanning detectors Image: NPA acord-12	
t _{pulse} , ms	≤ 130	interferometer (0.8 mm)	
NBI E [keV] / P [MW]	≤ 27 / 0.7	3/1	14

Energy confinement

OH, D plasma, I_p = 200 kA 26 keV D NBI 0.7 MW, D plasma, H-mode, I_p = 200 kA

Difference if $\langle n_e \rangle > 3.10^{19} \text{m}^{-3}$ due to τ_E growth 1.5 times W_{tot} increase due to τ_E growth an FI confinement improvement

[`]<n_>, 10¹⁹ m⁴3

2

• $B_T = 0.4 T$

• B_τ = 0.5 T

Energy confinement

More today at 10:45 – Status of the Globus-M2 project

Fast Ion confinement

30-40% neutron rate increase was observed in D-D experiments

Orbital modeling: First Orbit losses decreased: $\approx 30\%$ neutron rate difference **NUBEAM:** T_e increase led to $\approx 20\%$ difference

classical FI confinement calculations overestimate neutron rate growth

0.4 T: sawtooth oscillations dominates 0.5 T: sawtooth-induced losses decrease, however many instabilities coexist

Sawtooth oscillations, fishbones and TAE exist simultaneously

6/14

D NBI 0.4 T 0.5 T TAE-induced Fast Ion losses 137 1.7 145 149 150 146 147 148 138 139 140 141 <n_> (10¹³*cm⁻³) <n_e> (10¹⁹*m⁻³) 1.6 2.5 1.5 drop of 28.5 keV CX neutral flux, % 2.0 80 1.4 1.5 70 MHD signal (a.u.) 3.0 1.0 1.5 60 MHD signal (a.u.) 3.0 0.0 50 -1.5 1.5 -3.0 0.0 40 neutron rate (a.u.) 140 -1.5 30 112 -3.0 84 20 NPA f lux, E= 26 keV (a.u.) 800 4 T 200 kA 56 10 0.5 T 250 kA NPA flux, E=27 keV (a.u.) 800 600 600 0 -0.5 1.5 2.5 1.0 400 0.0 2.0 400 dB/B_{tor}, 10⁻³ 200 200 145 137 138 139 146 147 148 149 150 140 141 t, ms t, ms

TAE

More frequent modes because of FI accumulation due to the better classical FI confinement and lower AM-induced losses

More today at 10:45 – Status of the Globus-M2 project

TAE location

- Doppler backscattering was applied for the first time to detect Alfven eigenmodes.
- Alfven oscillations of plasma rotational velocity were compared with magnetic probe signals.

Spectrograms of plasma velocity and MP signals

Alfven region: $\rho = 0.45 - 0.85$

Major plasma discharge disruption

Thermal quench

Major plasma discharge disruption

- t_{CQ} ~ I_p like in NSTX, but not in IDDB
- Linear dependence, almost no difference for H and D
- I_p/t_{CQ} ≈ const(I_p/S) like in NSTX and EAST

Radiation losses

Tomography reconstruction of radiation losses profile

LOSs of SPD-arrays

OH

Measured Brightness (projection of SPDarrays LOSs)

- P_{rad} total 90 kW (30% of P_{heat})
- P_{rad} from main plasma -50 kW (15% of P_{heat})

Radiation losses

Carbon transport analysis $I_{p}=200 \text{ kA}, B_{T}=0,4 \text{ T}$ $I_{p}=250 \text{ kA}, B_{T}=0.5 \text{ T}$ 150 0.4 0.6 0.8 1.0

OH, H-mode

1.2

ASTRA coupled with STRAHL code. NCLASS for transport coefficients.

SOL Physics

9-pin New movable probe installed at the outer was midplane.

Mach number values are close to typical values from other tokamaks such as JT-60U, MAST, ASDEX-U.

$$\lambda_q \sim I_p^{-1.1} B_T^{0.42}$$

Eich 2013, Scaling for Spherical tokamaks:

 $\lambda_q \sim I_p^{-1}$

2

1

0

0

35

.9 10¹

Separatrix

5

10

20

15

R - Rsep (mm)

25

30

35

Summary

In the experiments with the increased magnetic field :

- Energy content increased, in NBI discharges ~1.5 time rise was observed.
- τ_E increase in SOC and NBI regimes were observed.
- 30-40% neutron rate growth was observed due to classical and sawtooth-induced fast ion losses decrease, however new instabilities arised.
- TAE losses decreased, TAE behaviour changed. TAE spatial localization was measured using 4-ch Doppler reflectometer.
- t_{CQ} was in a good agreement with IDDB. Almost no dependence on m_i and linear dependence on I_p was observed.
- Radiation losses decreased, neoclassical transport and C concentration of several percent were confirmed.
- λ_q midplane dependence was estimated as ~ $I_p^{-1.4}B_T^{0.6}$.

More today at 10:45 – Status of the Globus-M2 project

Alfven amplitude

• Recovering Alfven magnetic field amplitude $\widetilde{B_{\theta}}$ from velocity oscillations $\widetilde{V_{\perp}}$

