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Progress toward LTX-β



◆  Experiments on LTX demonstrated benefits of lithium walls  
     for the low aspect ratio tokamak 

–  Increased confinement  
» Especially electron confinement 
» Without steep edge pressure gradients 

–  Low Zeff, even with full liquid lithium walls 
–  Broadened scrape-off layer 

◆  But: LTX lacked auxiliary heating (ion or electron channel) 
◆  Results were transitory – required termination of fueling 
◆  Cause of improved confinement could only be inferred 

◆  Upgrade to LTX-β designed to address remaining issues 
◆  Results from  LTX-β should provide a basis for lithium wall 

experiments on NSTX-U 

Introduction 
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Liquid lithium walls reinvent ST fusion 
➮A lithium ST reduces core plasma volume by 10× or more 

u  Isothermal plasmas 
eliminate 𝛁T-driven 
thermal conduction, 
turbulence 
Ø  Only 𝛁n remains 

LTX SOL  

u  Reduced sputtering 
at high ion energy 
Ø  Compatible with 

a very hot edge 

u  Hot edge reduces 
peak heat loads 
Ø  Power is spread 
Ø  Higher power 

density core 

u  Results from the Lithium Tokamak eXperiment (LTX) 

3



 LTX wall: metallic lithium coatings on high-Z 

u  Low aspect ratio tokamak 
–  R0 = 40 cm, a = 26 cm, 𝜅 = 1.6, 𝛿 = 0.2 
–  Btor < 1.7 kG 
–  Ip < 100 kA 

◆  Limited by a conformal wall 
–  High-Z wall-limited on the high field side 

◆  Wall is fully coated with lithium 
–  One coating applied at the start of a run  
–  100 nm coatings stop ions 

◆  Ohmic only; no auxiliary heating 
◆  Pulse length < 50 msec 
◆  Operated in hydrogen  

–  Gas puffing the only fueling source 
–  Fueled from the HFS midplane 

Shell >300 °C 
4 m2 - 80% of 
plasma surface 

Inner high-Z heated shell 
(304L SS/Cu) Bottom of 
shells form reservoir - up to 
300 cm3 liquid lithium 

4



−0.5

0

0.5

−0.6−0.4−0.200.20.40.6

−0.2

0

0.2

x

y

z

Beam trajectory 
in guide fields 
(one beam shown) 

Lithium 
pool 

Lithium pool 

Lithium evaporation system uses shell heaters 
+ two electron guns 

◆  Difficult to deposit more than one layer of 
lithium in a day – no between shots coating 

◆  Electron beams magnetically guided by low 
(~70 G) quasi steady-state magnetic fields 
–  10-20 minute operational cycle 
–  Lithium pool must be preheated 

»  Long heating, cooling cycle 
◆  4 m2 plasma-facing surface 

–  Coating 10’s – 100 nm thick 
 

◆  Electron gun – 1-2 kW 

◆  Lithium coating on centerpost 
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◆  Fueling (from centerstack) terminated 
at 462 msec 
~3-4 msec required to clear gas from 
nozzle 

u  Discharge operated on accumulated 
particle inventory after that 

u  Thomson scattering time is stepped 
through the discharge 
-  Dataset of 55 identical discharges 
-  Average ~ 5 discharges/time 

Low recycling with core fueling could only be simulated 
with transient gas puffing 
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u  Energy confinement ~ ITER98P(y,2) 

Plasma current 
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◆ Early in discharge: 
Ø  Lithium suppresses recycling 
Ø  But: gas puffing to raise density 

Axis 

Edge 

◆ Gas puffing cools edge 
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◆ No cooling: edge Te = core Te 

◆ Late in discharge: 
Ø  Lithium suppresses recycling 
Ø  No gas from puffing 

Lower 
edge 
density 

Flat Te 

Broader 
pressure 

◆ Ion temperature profile 
not well known 

Lithium walls + gas turn-off allowed demonstration of 
flat electron temperature profiles – not steady-state 
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Lithium did not significantly dilute core plasma or 
radiate power 

◆  Lithium impurity <2-3%   
Ø  Modest radiation losses compared to tungsten walls 
Ø  Zeffective remains below 1.2 

u   Lithium influx will decrease with further energy increases 
u  But: could not directly measure core lithium concentration 

u  Fully ionized in the core 
u  Radiated power only inferred from line radiation 

u  No bolometer array 8



Collisionality is very low in LTX 

𝝆pol 

◆  High temperature, low collisionality region extends to SOL 
◆  SOL is hot, collisionless, with nonzero pressure 

–  Mirror confined. Radial transport will dominate. 
◆  Edge diagnostic set in LTX not appropriate for this  
    unanticipated regime 
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Plasma confinement improves compared to 
ohmic scaling law  

◆  Comparison is with neo-Alcator Linear Ohmic Confinement scaling 
–  Appropriate for small tokamaks without auxiliary heating, like LTX 

◆  Factor of three improvement as electron temperature flattens 
–  Estimate neglects ion stored energy 

◆  Core transport and turbulence not diagnosed in LTX 
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SOL hydrogen is implanted deep in lithium PFC 
- Capability for materials analysis of lithium coatings modest 
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◆  Range of a proton in lithium can exceed 500 Å 
Ø  LTX operates in hydrogen, with high edge electron temperatures 

Ø  Surface analysis limited to XPS – range a few 10s of Å 
◆  Probability of reflection is negligible 
◆  Little energy transferred to surface; low sputtering 

TRIM modeling by 
L. Buzi, Princeton U. 

Water 

Surface monolayer 
forms 
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◆  Neutral beam for fueling, auxiliary heating 
◆  Lithium CHERs for ion temperature profiles, rotation profiles 

–  Core lithium concentrations 
◆  ECH/EBW for particle-free heating, electron heating 
◆  Transport diagnostics 

–  Fluctuation reflectometry for core turbulence 
–  Electron heat pulse propagation with EBW 

◆  Higher toroidal field ➮ higher plasma current, to confine beam 
ions 

◆  New evaporative coating systems 
–  More frequent coating cycles 
–  Between-shots capability 

◆  Upgraded SOL diagnostics 

LTX-β extends the capabilities of LTX 
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Neutral beam will extend lithium wall studies in LTX-𝛽 
2 NBI systems on loan from Tri-Alpha Energy 

◆  700 kW beam will also provide large toroidal momentum input 
Ø  Beam installation nearly complete 

◆  Tangency radius 23 cm  
–  R0 = 40 cm 

u  Very small footprint 

◆  17 – 23 kV, 35A, pulse length < 30 msec 
◆  Paux significantly larger than Pohmic 

◆  Significant core fueling source 
–  Supplement with HFS puffing 
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◆  Neutral beam tank in test cell 
◆  NB power supply fully tested into dummy loads.  

–  Cabled into test cell. 
◆  Power supply for toroidal field upgrade near dummy load testing 
◆  All vacuum pumping components onsite for installation 
◆  Most vacuum boundary changes complete 
◆  Pumpdown within weeks 

Power supply tested; beam tank in place 

Beam 
source 

Beam 
tank 
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u  LTX-β modeling 
u  TNBI is neutral beam torque  
(20 kV, 30 A source, Rtan=0.23 m) 
u  <ne> = 1019 m-3, Vpl=0.7 m-3 
u  Two Ti and τE values used from 

reference projections; τφ ~ τE  
u  Assume n0(R) = 1016 m-3/(1-R) 
-  R is recycling coefficient 

u  Minimum R from lithium is ~ 0.1 
or less, for high edge Te 

 

Ti=1.0 keV, τE=20ms
Ti=1.0 keV, τE=30ms

0-D Torque balance indicates that the ion toroidal rotation speed 
with NBI torque should vary strongly with neutrals in plasma 

 
u  Unknown: magnetic braking from shell eddy current-induced error fields  

Global recycling coefficient 

J. Canik, ORNL  
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◆  Funded by Small Business Innovative Research grant to Eagle Harbor 
Technologies 

◆  Eagle Harbor will design, engineer power supply for testing/use at PPPL 
◆  Tube modeled to output 100 kW for >5 msec pulse by design engineer 
◆  Looking at X-B mode conversion 
◆  2 tubes may be stacked in time for >10 msec pulse, multiple pulses 

Modest ECH/EBW source for electron heat 
pulse propagation to be installed in 2018 

or abroad, without proper authorization by the U.S. Department of Commerce
L-3 Communications Electron Devices,  Ph:  (570) 326-3561  Fax:  (570) 326-2903    E-mail:  wpt.marketing@L-3com.com   www.L-3com.com/edd

This technical data is controlled under the Export Administration Regulations (EAR) and may not be exported to a foreign person, either in the U.S. 

Performance Characteristics 
Frequency ........................................ 9.300 GHz, +/- 25 MHz 
Peak Pulse Power Output .............................. 1,700  kW min 
Average Power Output ............................................ 1,360 W 
Peak Anode Voltage ........................................... 34 to 38 kV 
Peak Anode Current ...................................................... 88 A 
Average Anode Current .............................................. 70 mA 
Pulse Width ............................................................. 4.0 uSec 
Duty Cycle ................................................................. 0.0008 
Filament Voltage (Standby) ........................................... 10 V  
Filament Current (Standby) ........................................... 15 A 
Filament Voltage (Oscillating) .......2 V (back-down required) 
Warm-up time ......................................................... 300 Sec. 
Load VSWR .......................................................... 1.2:1 max 

Environment    
Cooling ............................................ Laboratory environment 

water cooling to anode & tuner 
Flow Rate (Operating) .................................... 1.0 gallon min 
Max Inlet temp (Operating) ....................................... +45 °C 
Max Outlet temp (Operating) .................................... +85 °C 
Temperature Range (Ambient Air) .................. 5 °C to 40 °C 

The L6170 is a high output power coaxial pulse 
magnetron that delivers 1,700 kW minimum peak output 
power at a duty cycle of up to 0.0008 and a pulse width 
of up to 4.0 µ Sec.      

L-6170 
1,700 kW X-Band 

Coaxial Pulsed Magnetron 

� Linear accelerator applications
� 9.3 GHz, high frequency stability
� Tunable +/- 25 MHz to match accelerator
� 1,700 kW peak output power
� 0.0008 duty cycle
� Liquid cooled anode
� Integral permanent magnets

Mechanical Description 
RF Launch Type .......... WR-112 mates with UG-51/U flange 
Weight (nominal)  ............................................ 35 lb. (16 Kg) 
Outline dimensions  ............................... See outline drawing 
Mounting position  ......................................... Any orientation 
Tuning ....................................................... 10 turns, nominal  
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◆  Neutral beam-based diagnostics (ORNL) 
–  Li-CHERs for ion temperatures 

»  Eliminate uncertainty in core ion temperature from Abel-inverted 
profiles 

–  Rotation profiles 
»  Investigate toroidal momentum transport without edge neutrals 

◆  Install re-entrant bolometer, Lyman alpha arrays  
–  Tangential arrays will view full radial chord for accurate DEGAS2 

assessment of recycling 
–  Additional bolometry (ORNL) 

» Radiation losses found to be significant in power balance 
◆  Magnetic fluctuation diagnostics 

–  Toroidal array of Mirnov coils for MHD studies 
◆  Upgraded equilibrium magnetics for improved reconstructions 

Expanded diagnostic set vital for LTX-𝛽   
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◆  5 additional Thomson scattering channels for far scrape-off layer  
–  Core Thomson adequate for ne ~ 2-3 × 1017 m-3 

 with 20J laser 

–  New polychromator channels to extend measurement to lower density 

◆  Upgrade profile reflectometer for 
fluctuation measurements (UCLA) 

◆  Investigate 1 mm interferometer 
upgrade for low-k scattering (UCLA) 

◆  Replace triple Langmuir probes with 
single-tip probes 
–  More robust; suited for high edge 

temperatures 
◆  Gridded energy analyzers for 

scrape-off layer 
–  Other SOL ion analysis? 

Diagnostic set for LTX-𝛽  

Reflectometer 

Thomson 

Not 
normalized
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◆  LTX-β will extend the study of the lithium wall regime to 
–  Higher toroidal field and plasma current 
–  Auxiliary heated discharges 

» NBI 
»  Short-pulse EBW 

–  Discharges with (partial) core beam fueling 
–  More frequent lithium deposition, including between-shots 

coatings 
◆  Upgraded diagnostics to investigate confinement w/o temperature 

gradients 
–  Effect on core fluctuations 
–  SOL diagnostics 
–  Surface science 

◆  Validate lithium wall regime for future NSTX-U experiments 

Conclusions 
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