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Pi,heat~Pi,loss �

Requirement 1: 

Pi,heat>>Pi,loss �



  A limited number of plasmas isolated from coil, satisfy  P heat>>P loss.	
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Control coils �

Control coils �

 Upgrades of TS merging exps. were accepted by JSPS: 
  TS-3 (R=0.2m)     Brec< 1kG             �TS-6 Brec > 5kG  
  TS-4 (R=0.5m)     Brec< 0.5kG           TS-4U Brec> 3kG  
  UTST (R=0.45m) Brec< 0.2kG           UTST-U Brec> 1.5kG   
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How high is the rec. heating? useful for fusion?            How does it depend on Brec and Bt?
  Key: Scaling Low: Ion heating energy ∝Brec

2   

Requirements:   (1)  Pion heat>>Pion loss, Pion-electron : merging plasmas are
fully isolated from coils/wall (TS-3, UTST, MAST ) (2) δ is compressed as thin as ρi.          About 50% of reconnecting magnetic energy 
is converted to ion thermal energy. 1)   Guide Field Bt Scan
2)   Inflow Vin Scan
3)   Comparison with PIC simulation
High guide field (high-q tokamak) reconnetion heating : 
Ono et al.  PPCF’12, PRL’11, POP’15, POP’93, Tanabe et al. PRL’15
Low guide field (low-q tokamak and spheroamk) reconnection heating:
 Ono�et al. PRL’05, PRL’96, PPCF’92, PFR’86�
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MAST �

Rec. startup CS startup 
MAST Reconnection Exp. 
The ST merging/reco-
nnection heats ions to 
1.2keV within 10 msec.	
  
Rec. startup CS startup 
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Significant Ion Heating in MAST Rec. 
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MAST: Ultra-High-Rm�

 Pi,heat>>Pi,loss , 
Pe,heat>>Pe,loss �
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Assumptions:   ・�2D ��・�Steady-state
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∇2B
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Brec
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2D Steady-State model predicts the outflow ~ VAlf
-The Sweet-Parker 2-D Model for Magnetic Reconnection-  �

VinBrec =ηSpitz jt

4LBrec = 4Lδµ0 jt

B is resistively annihilated in the sheet
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Shock-like 
�����pileup 

We confirmed  
1) ion acceleration up to 70% of VPAlf 
2) downstream heating of ions 

n1/n2~B1/B2~v1/v2,  

High  Guide-
Field Rec. 

 Y. Ono 
PRL2011 
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TS-3: Mechanism for rec. heating�: Pi,heat>>Pi,loss �
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Electron heating
at X-point�

Ion heating
in downstream�

Shock-like ne profile�

2D profiles of 
Te, ne, Ti�

MAST��

MAST: Ultra-High-Rm�:
 Pi,heat>>Pi,loss , 
Pe,heat>>Pe,loss �
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Ti and Te profiles agree with 
recent particle (PIC) 
simulation results by Inoue， 
Cheng & Horiuchi�at NIFS. 
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Brec
2-scaling for ion outflow heating 

ΔWth~Δwion∝Δ(nTi)∝ΔTi   (n~normalized)∝Βrec
2∝Βp

2 
 

Voutflow~VpA∝Bp/n1/2 �

MAST �

ne~1.5x1019m-3 �



Δwion∝Δ(nTi)∝VPAlf
2∝Βrec

2∝Βp
2�

The PIC simulation confirmed the Brec
2-scaling 

of reconnection heating. 
 

PIC Simulation by Inoue/Horiuchi/Cheng �ST/Spheromak Merging Exp. �
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The onset of fast rec. at t=250µsec���
forms the negative potential well. �

Onset of 
Fast Rec. �

Erec�lm�

δ �

PIC (Inoue, Horiuchi, Cheng) Bt≈Brec 

Requirement 2:  Onset of fast rec. when δ is compressed as thin as ρi.�
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Effective resistivity ηX increases markedly  
when sheet width δ is compressed as thin as ρi. 

ηX and δ evolutions 
under five different  
compression forces  

ηX  and δ evolutions  
under six different  
ρi (BX)  
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Requirement 2:  δ is compressed as thin as ρi.
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A fix value of ion heating is probably caused by  
1) outflow speed ~ 0.6-0.7VpAlf, 2) δ as thin as ρi. 
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Requirement 2: δ is compressed as thin as ρi.

If δ<ρi, ion heating is determined by Brec, not by Bt �

Brec=const. �

Brec



Requirement 2: Insufficient compression δ > ρi, causes  
ion heating lower than the B2-scaling prediction. 
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Insufficient compression  δ>ρi, causes lower ion heating. �



Summary and Conclusions
1)  Ion heating energy and Ti increase with Brec

2. 

     if (1) δ is compressed as thin as ρi. 
         (2) Pion heat>>Pion loss, Pion-electron (TS-3, UTST, MAST ) 
2) Pion heat>>Pelectron heat 
3) Rec. accelerates ions up to 60-70% of VpAlf , transforming 
~50% of rec. magnetic energy into Wthe, ion in downstream. 
4) Current sheet (plasmoid) ejection as a fast rec. mechanism 
weakens the Bt dependence of reconnection heating. 
5) Global electrostatic potential structure  

UK-Japan team extended the Brec
2-scaling  to Ti~1.2keV 

(Te~0.8keV) for the  Brec~0.15T in MAST. 
The rec. is a promising method for heating ions > 10keV: 
direct access to alpha heating.The new projects of high Brec ST merging  started in U. Tokyo and Tokamak Energy.  


