Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors

Jonathan Menard (PPPL)

22nd Topical Meeting on the Technology of Fusion Energy (TOFE) Philadelphia, PA August 22-25, 2016

PPPL leading multi-institutional collaborative effort exploring low aspect ratio tokamak concepts

IOP Publishing | International Atomic Energy Agency

Nucl. Fusion 56 (2016) 106023 (43pp)

doi:10.1088/0029-5515/56/10/106023

Nuclear Fusion

Fusion nuclear science facilities and pilot plants based on the spherical tokamak

J.E. Menard¹, T. Brown¹, L. El-Guebaly², M. Boyer¹, J. Canik³, B. Colling⁴, R. Raman⁵, Z. Wang¹, Y. Zhai¹, P. Buxton⁶, B. Covele⁷, C. D'Angelo², A. Davis², S. Gerhardt¹, M. Gryaznevich⁶, M. Harb², T.C. Hender⁴, S. Kaye¹, D. Kingham⁶, M. Kotschenreuther⁷, S. Mahajan⁷, R. Maingi¹, E. Marriott², E.T. Meier^{8,10}, L. Mynsberge², C. Neumeyer¹, M. Ono¹, J.-K. Park¹, S.A. Sabbagh⁹, V. Soukhanovskii¹⁰, P. Valaniu⁷ and R. Woollev¹

¹ Princeton Plasma Physics Laboratory, Princeton, NJ, USA

- ² University of Wisconsin, Madison, WI, USA
- ³ Oak Ridge National Laboratory, Oak Ridge, TN, USA
- ⁴ CCFE, Culham Science Centre, Abingdon, Oxfordshire, UK
- ⁵ University of Washington, Seattle, WA, USA
- ⁶ Tokamak Energy Ltd, Milton Park, Oxfordshire, UK
- ⁷ University of Texas at Austin, Austin, TX, USA
- ⁸ College of William and Mary, Williamsburg, VA, USA
- ⁹ Columbia University, New York, NY, USA
- ¹⁰ Lawrence Livermore National Laboratory, Livermore, CA, USA

Paper summarizing 5 year study of Cu and HTS STs recently published in Nuclear Fusion

Possible missions for next-steps

1. Integrate high-performance, steady-state, exhaust

- Divertor test-tokamak DTT
- 2. Fusion-relevant neutron wall loading
 - \succ Γ_n ~ 1-2MW/m², fluence: ≥ 6MW-yr/m²
- 3. Tritium self-sufficiency
 - > Tritium breeding ratio TBR \geq 1
- 4. Electrical self-sufficiency

5. Large net electricity generation

ightarrow Q_{eng} >> 1, P_{electric} = 0.5-1 GWe

This talk will discuss PPPLled studies of how low-A "spherical" tokamaks could fulfill these missions

What is optimal A for HTS FNSF / Pilot Plant?

- $P_{fus} / V \sim \epsilon (\beta_N \kappa B_T)^4$ at fixed bootstrap fraction
- β_N and κ increase at lower aspect ratio
- B_T decreases at lower A depends strongly on:

- Inboard shielding, HTS allowable field and current density

Approach:

- Fix plasma major radius and heating power (50MW)
 R₀ = 3m smallest size for Q_{eng} > 1 and high fluence
- Apply magnet & plasma constraints (see backup)
 HTS strain: 0.3%, β_N: n=1 no-wall, κ: 0.95 × limit, f_{GW} = 0.8
- Vary aspect ratio from A = 1.6 to 4
- Vary HTS current density, peak field
 Also scan inboard shielding thickness
- Compute Q_{DT} , Q_{eng} , and required H_{98} (unconstrained)

HTS cables using REBCO tapes achieving high winding pack current density at high B_T

Conductor on Round Core Cables (CORC) J_{WP} ~ 70MA/m² 19T

7 kA CORC (4.2K, 19 T) cable

Base cable: 50 tapes YBCO Tapes with 38 µm substrate (Van Der Laan, HTS4Fusion, 2015)

High TF winding-pack current density required to access highest B_T at lower A

1.5

2.0

2.5

3.0

Δ

3.5

- \leq 0.3% strain on winding pack for all cases shown here
- Effective inboard WC neutron shield thickness = 60 cm

4.0

High current density HTS cable motivates consideration of low-A tokamak pilot plants

- ITER-like TF constraints: $-J_{WP}=20MA/m^2$, $B_{max} \le 12T$ $-P_{fusion} \le 130MW$ $-P_{net} < -90MW$
- $J_{WP} \sim 30MA/m^2$, $B_{max} \leq 19T$ - $P_{fusion} \sim 400MW$ - Small P_{net} at A=2.2-3.5
- J_{WP} ≥ 70MA/m²,B_{max} ≤ 19T −P_{fusion} ~500-600MW

A ~ 2 attractive at high J_{WP}

A \geq 2 pilot plant scenarios have elevated H > 1, f_{BS} ~ 80%, I_P = 6-12MA

Effective inboard WC neutron shield thickness = 60cm

A ≤ 2 maximizes TF magnet utilization

Need inboard breeding for TBR > 1 at A=2

Breeding blanket thickness model

A ≥ 3 maximizes blanket utilization

A=2, R₀ = 3m HTS-TF FNSF / Pilot Plant

 $\begin{array}{l} \textbf{B}_{T} = \textbf{4T}, \textbf{I}_{P} = \textbf{12.5MA} \\ \textbf{\kappa} = 2.5, \, \delta = 0.55 \\ \textbf{\beta}_{N} = \textbf{4.2}, \, \textbf{\beta}_{T} = \textbf{9\%} \\ \textbf{H}_{98} = 1.8, \, \textbf{H}_{Petty\text{-}08} = 1.3 \\ \textbf{f}_{gw} = 0.80, \, \textbf{f}_{BS} = 0.76 \end{array}$

Startup I_P (OH) ~ 2MA $J_{WP} = 70MA/m^2$ $B_{T-max} = 17.5T$ No joints in TF Vertical maintenance

 $\begin{array}{l} \textbf{P}_{fusion} = 520 \text{ MW} \\ \textbf{P}_{NBI} = 50 \text{ MW}, \text{ } \textbf{E}_{NBI} = 0.5 \text{ MeV} \\ \textbf{Q}_{DT} = 10.4 \\ \textbf{Q}_{eng} = 1.35 \\ \textbf{P}_{net} = 73 \text{ MW} \end{array}$

 $\langle W_n \rangle = 1.3 \text{ MW/m}^2$ Peak n-flux = 2.4 MW/m² Peak n-fluence = 7 MWy/m²

Inboard and outboard blanket vertical maintenance

Inboard blanket removed once outboard blanket sectors removed – depending on the toroidal extent of the inboard blanket

Exploring liquid metal divertor design similar to flowing water curtain systems

LM injector system can be assembled in a single or double unit

LM containment structure

Shield block

Ferritic steel backing plate

HTS ST-FNSF design with Li flow on divertor and inboard surfaces

Benefits of shorter-leg LM high-heat-flux divertor:

- Significantly reduce outboard PF coil current – Reduced PF size, force, structure
- Eliminate separate upper cryo-stat (for PF5U)

• Li wall pumping could help increase H

Summary

- Developed new self-consistent configurations for low-A FNSFs / Pilot Plants
 - Long-leg and/or LM divertor, T self-sufficient, only ex-vessel TF and PF coils, vertical maintenance
- Compact Pilot Plants achievable by combining improved stability of low-A + advanced magnets
 - Optimal A will be informed by results from NSTX-U and MAST-U and REBCO TF magnet development
- Liquid metal divertors for high heat flux could simplify cryostat, reduce coil currents/forces

- Higher confinement from liquid Li also beneficial

Backup slides

Detailed breeding calculations completed for A=2

- Step 1- Infinite media of LiPb
- Step 2- LiPb confined to OB FW/blanket
- Step 3- Assembly gaps added
- Step 4- Homogeneous mixture of blanket in upper and lower ends of OB blanket
- Step 5- FW material added
- Step 6- Side, back, and front walls added
- Step 7- Cooling channels added

- Step 8- SiC FCI added
- Step 9- Stabilizing shells added
- Step 10- MTM only inserted (TBR relative to Step #9)
- Step 11- 4 TBMs only inserted (TBR relative to Step #9)
- Step 12- 4 NBIs only inserted (TBR relative to Step #9)
- Step 13- all MTM, 4 TBMs, and 4 NBIs inserted
- Step 14 include inboard breeding blanket

Comparison of low-A FNSF / Pilot Plants

TF coil type	R [m]	А	Q _{eng}	Q _{DT}	TBR	Surf-avg n-fluence [MWy/m²]	P _h / S [MW/m²]	H ₉₈	H _{Petty}	Η _{ST}	κ _x	β_N	β _T [%]	f _{BS}	I _P [MA]	В _т [Т]	P _{fus} [MW]
Copper	1	1.7	0.1	1.0	≤ 0.9	6	1.6	1.25	1.25	0.70	2.75	5	20	0.82	7.3	3.0	60
	1.7	1.7	0.15	2.0	1.0	≥6	0.9	1.25	1.1	0.72	2.75	4	16	0.76	11	3.0	160
REBCO	1.8	2	1	7.3	0	0.04	0.5	2.3	2.1	0.64	2.30	4	7.1	0.84	7.4	5	160
	3	2	1.3	10	1.0	4 - 6	0.5	1.8	1.3	0.69	2.50	4	8.7	0.76	13	4.0	510

Plasma constraints

- Fix plasma major radius at $R_0 = 3m$
 - Chosen to be large enough to allow space for HTS neutron shield and access $Q_{eng} > 1$ for range of A
- Inboard plasma / FW gap = 4cm
- Use ϵ -dependent $\kappa(\epsilon)$, $\beta_N(\epsilon)$ (see next slide)
- Greenwald fraction = 0.8
- q* not constrained
 - q* is better ϵ -invariant than q_{95} for current limit
 - Want to operate with $q^* > 3$ to reduce disruptivity
- 0.5 MeV NNBI for heating/CD fixed $P_{NBI} = 50$ MW
- H_{98y2} adjusted to achieve full non-inductive CD

Aspect ratio dependence of limits: $\kappa(\epsilon)$, $\beta_N(\epsilon)$

Pilot study uses $0.95 \times \kappa$ value shown here:

- NSTX data at low-A
 - Also NSTX-U/ST-FNSF modelling
- DIII-D, ARIES-AT for higher A
 - $\kappa \rightarrow 1.9$ for A $\rightarrow \infty$
- Profile-optimized no-wall stability limit at f_{BS} ≈ 50%
 - Menard PoP 2004

$$\beta_N \rightarrow 3.1$$
 for A $\rightarrow \infty$

Engineering constraints

- Magnet constraints
 - Maximum stress in TF magnet structure = 0.66 GPa
 - HTS tape/cable strain limit 0.3% (equivalent to 0.4 GPa)
 - Winding pack current density (CORC 2015) 70 MA/m²
 - OH at small R \rightarrow higher solenoid flux swing for higher A
- Shielding / blankets
 - HTS fluence limit: 3.5-5 x 10^{22} n/m²
 - Shield:10x n-shielding factor per 15-16cm WC for HTS TF
 - Include inboard & outboard breeder thickness for TBR ~ 1
 - "Effective shield thickness" includes shield + DCLL blanket
- Electrical system efficiency assumptions:
 - 30% wall plug efficiency for H&CD typical of NNBI
 - $\ge 45\%$ thermal conversion efficiency typical of DCLL
 - Also include pumping, controls, other sub-systems
 - See Pilot Plant NF 2011 paper for more details

Simplified TF magnet design equations

$$V_1 + V_2 = \frac{1}{2} B_0 R_0 I_{\text{coil}} \ln\left(\frac{r_2}{r_1}\right)$$
(25)

$$r_1 V_1 + r_2 V_2 = \frac{1}{2} B_0 R_0 I_{\text{coil}}(r_2 - r_1)$$
 (26)

Fig. 5. Lorentz forces are normal to the conductor in the poloidal plane.

From J. Schwartz, Journal of Fusion Energy, Vol. 11, No. 1, 1992

A=2, $R_0 = 3m$ device TF inboard leg showing allocated space for case and winding

CORC Conductor – Achieved now

HTS performance vs. field and fast neutron fluence

R Prokopec et al

Figure 6. Critical currents (ASC-40) in magnetic fields applied parallel to the ab-plane (left) and parallel to the *c*-axis (right) before and after irradiation to a fast neutron fluence of $2.3 \cdot 10^{22}$ m⁻².

Figure 8. Normalized critical currents in a magnetic field of 15 T applied parallel to the ab-plane (left) and parallel to the *c*-axis (right) as a function of neutron fluence.

Neutronics analysis for HTS TF shielding

HTS TF lifetime is very strong function of inboard shielding thickness

Inboard shield + blanket equivalent to 60cm WC \rightarrow 3FPY \rightarrow 6-7MWy/m² \rightarrow fulfill FNSF requirement

3-D Neutronics Model

20

DB: HTS FNSE 1.st

50 cm Shield

26

3

ack Wall

First Wall

CAD Geometry of OB Blanket with Ports

Local details of Li divertor / inboard FW

Lower Li containment system

Base Li return trough One of ten 100 mm ID Li inboard drain lines

Li flows over inboard surface to a continuous trough that feeds ten Li drain lines.

Inboard FW / DCLL / shield components

Assessing long-leg / deep-V slot divertor

- PF coils outside TF
- Increase strike-point radius ~2× to reduce q₁₁ and peak heat flux
- Divertor PFCs in region of reduced neutron flux
- Narrow divertor aperture for increased TBR
- More space for breeding at top/bottom of device

Long-leg / Super-X aids heat flux reduction

