

Density fluctuation measurements from the NSTX Beam Emission Spectroscopy (BES) diagnostic system

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL PSI Princeton U Purdue U** SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Washington **U** Wisconsin

D. R. Smith¹, R. J. Fonck¹, G. R. McKee¹, D. S. Thompson¹, I. U. Uzun-Kaymak¹, and B. C. Stratton²

> ¹University of Wisconsin-Madison ²PPPL

Joint US-EU Transport Task Force Workshop San Diego, CA April 6-9, 2011

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Beam emission spectroscopy (BES) provides low-k fluctuation measurements for studying plasma turbulence in NSTX

Outline

- BES diagnostic overview
 - Optical and detection system
 - Measurement capabilities
- Initial observations
 - Fluctuations decrease at LH transition
 - Eddy poloidal motion reverses after LH transition
 - Large poloidal correlation lengths
 - Correlation lengths depend on |B| and Ip
 - Post-ELM harmonic features localized at top of pedestal
 - GAE and TAE mode structure observed
- Summary and plans

BES provides long-wavelength density fluctuation measurements with $k_{\perp}\rho_i < 1$

- BES measurements contribute to several NSTX research areas
 - Turbulence and transport
 - ITG/TEM turbulence
 - ZFs and GAMs
 - Flow fluctuations
 - Boundary physics
 - LH transition

WISCONSIN

- Edge & SOL fluctuations
- ELMs and EHOs
- Waves-particle interactions
 - TAE/EP/GAE mode structure

• Doppler shift and optical filter isolate NB D_{α} emission from thermal D_{α}

NSTX BES system was commissioned in 2010

• Doppler shift and optical filter isolate NB D_{α} emission from thermal D_{α}

 Two optical views are aligned to steep pitch angles in NSTX plasmas

D. R. Smith et al, **RSI** 81, 10D717 (2010) N. Schoenbeck et al, **RSI** 81, 10D718 (2010)

Two optical views and 32 detection channels provide radial coverage from r/a \approx 0.1 to SOL with 2-3 cm spot sizes

Image patterns provide radial and poloidal correlation lengths, k-spectra, and flow fluctuations

Measured signals exceed amplifier noise and respond to NB power

- Optical design
 - Red shift view
 - 2.3 mm²-ster etendue
 - 4 nm optical filter at 661 nm
- Photodetector
 - PIN PD and low-noise amplifier
 - 85% QE and 4.5 mV/nW response
 - Refrigerant cooling at -20° C
 - Evacuated enclosure
- Digitizer

WISCONSIN

- 32 channels
- 32 MHz input sampling
- Onboard FPGA provides 950 kHz low-pass FIR filter
- 2 MHz output sampling
- 16 bit resolution

Photodetectors, detector box, and optics module

General characteristics of low-k turbulence in NSTX

- Poloidal correlation lengths on the order of 10 cm
- Broadband turbulence with frequencies up to 100 kHz
- Poloidal flow speeds in the range 5-10 km/s and consistent with ExB flows
- Fluctuations can decrease at LH transition, but subsequently increase during H-mode evolution
- Reduced fluctuations at LH transition can extend into core region

BES power spectra consistent with larger fluctuation amplitudes at higher |B|

NSTX confinement scaling (Kaye et al, NF (2007)): $\tau_e \sim B_T \sqrt{I_P}$

Poloidal correlation lengths decrease at higher |B|

WISCONSIN

BES power spectra do not show a clear trend with Ip

Poloidal correlation lengths do not show a clear trend with lp

Decrease in fluctuations at LH transition observed from edge to core in some discharges

Decrease in fluctuations at LH transition observed from edge to core in some discharges

WISCONSIN

Joint US-EU TTF Workshop - D. R. Smith - April 6-9, 2011

Correlation analysis indicates the apparent motion of eddies changes from electron to ion directions at the LH transition

Poloidal coherency/correlation in 138850 at R = 140 cm

L-mode phase: 219-249 ms

H-mode phase: 266-287 ms

WISCONSIN

Fluctuations increase following HL back-transition

¹³⁸⁶⁹⁰ XMP70 Smith

Fluctuations increase during large ELM events

Post-ELM harmonic features at 50-100 kHz are localized at the top of the pedestal

Harmonic features are either absent from or weakly present in magnetic spectra

TAEs and GAEs have been observed in extended radial regions

TAE burst

GAE mode

Heidbrink, CO4

Tritz, PI2

Summary

- NSTX BES system commissioned in 2010
- System measures fluctuations with kρ_i< 1
 - -32 detection channels (56 fiber views)
 - -Radial and poloidal arrays covering core to SOL
 - -2 MHz sampling
 - -2-3 cm spot sizes at NB
- Initial observations
 - -Poloidal correlation lengths on the order of 10 cm
 - -Broadband turbulence up to 100 kHz observed
 - -Poloidal flows in the range 5-10 km/s
 - -Fluctuations decrease at LH transition
 - -Post-ELM harmonic features (50-150 kHz) localized to pedestal