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Characterize the pedestal structure evolutions and pedestal region
turbulence to elucidate the role of transport in pedestal constraints

¢ Summary of the pedestal structure characterization in ELMy H-
modes

¢ Interpretive transport analysis
 SOLPS calculations
« Comparison with XGCO - neoclassical simulations

¢ Fluctuations characterizations during the inter-ELM phase

2@ Preliminary 6f XGC1 calculations and comparison with
observations

¢ Analysis of lithium effects on transport and turbulence will be
shown in this afternoon session by D. Boyle; R. Maingi
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Dedicated experiments to vary the pedestal pressure height and

width through I, scans were performed on NSTX

¢ Constant injected power (Pngi) and magnetic field (BT)
¢ Lower single null slightly downward and fixed high triangularity shaping.
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¢ Large drop (up to 15%) of stored energy (Wmna) after each ELM crash.
Pedestal stored energy ~ 25% - 40% of Wnd

¢ Implicitly generating scans of the pedestal structure.
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Radial profiles of density, temperature and pressure are composite
of times between multiple fraction of ELMs
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Temperature pedestal height increases during the ELM cycle while
the density pedestal show no convincing trend
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Pedestal width and height progressively increase during ELM
cycle but the peak pressure gradient remains clamped
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Measured pedestal pressure width scales with vVf

0.157

© Good description of the width

scaling over multiple machines
(DD, CMOD, JET, MAST)

Groebner, NF, (2009)

Kirk, PPCF, (2009)

Beurkens, PoP, (2011)

Walk, to be published, Nucl. Fusion (2012)
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2 In NSTX, the observed width is
larger than conventional tokamaks
)ped)ﬂlellD

-007 By ) cmop - NSTX pedestal width is 1.7 and

JET

T Diato Nu. Fusion (201) 2.4 Iarger than MAST and DIII-D
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© Larger width in NSTX could sustain significant edge current
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Saturation of the gradient is ubiquitous across devices, but different
trends in pedestal height evolution are observed
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Characterize the pedestal structure evolutions and pedestal turbulence to
elucidate the role of transport setting the pedestal structure

T
b/

¢ Interpretive Transport Analysis
 SOLPS calculations
« Comparison with XGCO - neoclassical simulations
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2D SOLPS* modeling shows modest variations of the transport
coefficients at the pedestal top

Location of the density pedestal top
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Location of the temperature pedestal top

Particle flux at the pedestal top is insignificant during the inter-ELM
No clear trend for the electron heat flux

lon heat flux becomes larger later in the ELM cycle

*R. Schneider et al, Contrib. Plasma Phys. 46 (2006)
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lon heat diffusivity comparison: SOLPS and XGCO0

[on heat diffusivity
SOLPS and XGCO
30%-50%  80%—99%

7\,," SOLPS Dashed
‘c | XGCO  Solid

XGCO COmpUteS = Pedestal Region

the neoclassical '

transport

parameters

¥ Neoclassical ion diffusivity remains unchanged during the inter-ELM phase
in the pedestal region

2 In the pedestal region SOLPS shows larger than neoclassical ion diffusivity
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Characterize the pedestal structure evolutions and pedestal turbulence to
elucidate the role of transport setting the pedestal structure

¢ Fluctuations characterizations during the inter-ELM phase
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BES yields measurements of the poloidal correlation

THE UNIVERSITY
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BES provides measurements of the poloidal correlation length and
poloidal velocity

BES inter—-ELM poloidal correlation lengths

_ 25+
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& Modest change in poloidal correlation length during the inter-ELM phase
— Poloidal correlation length corresponds to toroidal mode number (rke/q) n =2 -3
© Measurements show ion scale fluctuation in the pedestal top
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Evolution of the radial displacement power spectra indicates an
increase of the fluctuation level during the last 40% of ELM cycle

Reflectometer Radial Displacement Fluctuations Reflectometer Radial Displacement Fluctuations
20% — 40% ELM cycle 40% — 60% ELM cycle

¥ Radial displacement
induced by fluctuations

— Existence of broadband
fluctuations centered around
12 kHz
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Frequency [kHz]
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Y Increase of the overall
mode amplitude late in
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Evolution of the radial displacement power spectra indicates an
increase of the fluctuation level during the last 40% of ELM cycle

Reflectometer Radial Displacement Fluctuations
20% - 40% ELM cycle
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Radial correlation lengths at the pedestal top and steep gradient during
the inter-ELM phase UCLA

1+ Pedestal Top 4”& + Bottom Pedestal
0.9 + ; 0.9 ‘H h %Jf
0 + . *20 % — 40 % Early in ELM cycle ﬂ
8- . _ 0.8 X
. + . % 80 % — 90 % Late in ELM cycle ] i +
0.7 + , 0.7 +\\ .
S o6 L obs S o6l
_4(_‘_) ] )\7“ ~ 9 cm 2
B 054 © e
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S 0.4 S 0.4-
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o7 71— T Ot rrrrrrr L [T T |
0 20 40 60 80 100 0 10 15 20
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@ Radial correlation is valuable as it provides the spatial size of a turbulent perturbation
(i.e. eddy).
© Pedestal top correlation length is larger than that of the region of steep density
gradient
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Radial correlation length evolution depends on location
inside pedestal region

805 Correlation length evolution

during inter-ELM phase

:Region where the
ipedestal pressure

¢ Radial correlation length
increases at the pedestal
top
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o
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Characterize the pedestal structure evolutions and pedestal turbulence to
elucidate the role of transport setting the pedestal structure

Q

2 Preliminary 6f XGC1 calculations and comparison with
observations

€ Summary/Discussion

D NSTX-U A Diallo- TTF Annapolis 2012 18



Preliminary simulations using XGC1 are performed for cases
during the last part of the ELM cycle

O :
¥ of mode in XGC1 1 XGC1-Potential Fluctuations

— 200 x 60 spatial grid

— simulation box up to y, ~ 0.95
to include the unstable region

=
\ -4

Collisions and flows are not
included in this simulation

(o
& )

& Adiabatic electrons

< Probing the fully nonlinear

phase of the simulations =0-57]

Full-f simulation in the
whole edge with kinetic
electrons, flows, and
collisions will be performed.

-1.5-
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Preliminary simulations using XGC1 are performed for cases
during the last part of the ELM cycle

“J o6f mode in XGC1 df —XGC1 Linear regime df XGC1 fully nonlinear regime
. . 1 1
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Preliminary simulations from XGC1 show localized fluctuations
with experimental level radial and poloidal correlation lengths

df XGC1 fully nonlinear regime

1_
I 80 99% ELM cyc
0.8 T
B
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E 04
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Summary (l)

¢ Using ELMy discharges, we observed during the ELM cycle:

— Continuous increase of the electron temperature and much less variation in
electron density and pressure build up and at time saturation prior to the ELM
onset

— Consistent with barrier expansion phenomenology observed in other
tokamaks

— Pressure gradient, however, is clamped during most of the ELM cycle
¢ Interpretive transport analysis using SOLPS, and XGC1
— No convincing correlation between the electron heat flux and ELM cycle
— lon heat flux is larger in the pedestal region late in the ELM cycle
 In addition, lon heat flux larger than neoclassical estimates from XGCO
— Particle flux throughout remains difficult to assess
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Summary (ll)

‘ © Characterization of the fluctuations during the inter-ELM phase
— BES and reflectometry confirm ion scale turbulence 0.2 < k. pi <0.7
— Poloidal correlation is larger than radial correlation length
2 Preliminary simulations with XGC1 are performed
— Used in 6f mode in XGCA1

— Thus far, simulation results correlation lengths measurements agree with experimental
observations

» Most unstable mode is ITG in simulation: identification of turbulence in
experiment, however, will require full-f XGC1.

» Addition of electrons and flows will give a better sense of the heat
transport responsible for clamping the pedestal gradient

2 More work: A continuation and expansion of these comparisons to simulations with
the ultimate goal of identification of types of turbulence

— Further 3D analysis of reflectometry are underway to verify the 2D approximation
initially performed

 How well the diagnostic determine the true radial correlation length

— Extend the simulation to full-f mode using XGC1 and account for measured flows
and add collision.
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Backup
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Using TRANSP, no significant change in the electron heat
diffusivity at the pedestal prior to the onset of ELM

Heat Diffusivities 30% — 50% ELM cycle Heat Diffusivities 80% — 99% ELM cycle
157 Xexp 157
lo\] ] A |
E ;{ Paleo E ]
8 A 2 104
QC) 10_ II * € nped Tped I 5 10 ] nped Tped
ISH. I e e
5 I 5 ] =
@) ] o =‘==‘=
@) (3 =‘==..= = =
S g ] ] st
o o .
> & 1 i
@ §
= =]
0 - T rrrrrrrrrT 1
0.7 0.8 0.9 1

& Bottom half of the pedestal suggests that paleoclassical transport could be a major contributor
to the electron heat transport, but not at the pedestal top.

L In the pedestal top, neoclassical heat diffusivities appear to overestimate the experimental
ion X .
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Using TRANSP, no significant change in the electron heat
diffusivity at the pedestal prior to the onset of ELM

Heat Diffusivities 30% — 50% ELM cycle Heat Diffusivities 80% — 99% ELM cycle
15+ exp 157 exp
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g
1
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T

Transport Coefficients [m2/s]
Transport Coefficients [m2/s]

& Bottom half of the pedestal suggests that paleoclassical transport could be a major contributor
to the electron heat transport, but not at the pedestal top.

L In the pedestal top, neoclassical heat diffusivities appear to overestimate the experimental
ion X .
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The trends during the inter-ELM phase in heat diffusivities are
difficult to unravel

Heat Diffusivities @ Tged Heat Diffusivities @ nged
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Using both BES and correlation reflectometry, the inter-ELM spatial
structure of fluctuations exhibit ion-scale microturbulence

& Strong anisotropy of the turbulence is observed during the inter-ELM phase

@ Turbulence data suggests microturbulence with 0.2 <k, p; <0.7 propagating in ion

diamagnetic direction

20- BES inter—ELM poloidal correlation lengths 80-: Radial Correlation |ength evolution
18- Pedestal top L ped 0.9-0.7 ‘Region where the
164 50 rP; : ! ipedestal pressure
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4 + = EPedestal toP e
e | E  1Steep gradient :
O, 124 + <7 :
(&] 4 < !
< = 4 !
= 10 2407 4
S 2 ] :
o 89 5§ 1 '
@) 4 = 1 '
o I l l * +__Pedestal width
6 R '
i 5 20-_ l §
4_ d O T . .
1 pe "
o] kept ~0.1-0.2 oo
] JInstrument resolution
0 AL L L e 0 ] ———T T ——— T
0 20 40 60 80 100
ELM cycle [%] 0 20 40 60 80 100

ELM cycle [%]
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Apparent correlation between the magnetic shear at the pedestal
top and fluctuations amplitude increase during the ELM cycle

S = q@rq parameter during ELM cycle

Radial averaging of displacement fluctuation spectra
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ITG drives peaks at the pedestal top and R/L is larger than R/Lyi_crit

ITG drive during inter-ELM phase Critical ITG Gradient
102 3 30—
Q® " 80% — 99% ELM cycle 1 ¢q
O "M 60% - 80% ELM cycle 1 ° S magnetic shear
o5 = (1+T/T)(1.33 +1.91 S/q) Jr
101 i @) ", 40% - 60% ELM cycle y . RO/Ln
m — 20 (RO/LTI)CI’it Tzed
e (Y5 — h
E)' ’k‘ ' \' .‘::...’..,. ‘e g I:{O/L-ﬂ
i < g
° 8
] r]ped |
- e ¢
10- R N
B SR e oo =—=== "
: M"
___,::,,*_,__, N
10_2""I""I""I'"'I""I""I L L L

0.7 0.75 0.8 Oq)85 0.9 0.95 1 0.7 0.75 0.8 O¢85 0.9 0.95 1
n

¢ Jenko’s approximation suggests ITG could be unstable in the
pedestal top.
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2-D interpretive modeling with SOLPS*

*R. Schneider et al, Contrib. Plasma Phys. 46 (2006) 3.

& Solves conservation equations for
— Density, parallel momentum of each charge
state, electron energy, ion energy, charge
£ Includes models for plasma transport

— Parallel: classical along field lines

» with particle and heat fluxes limited to
simulate kinetic effects

— Radial: D, y adjusted to fit measured

plasma density and temperature profiles.

— ExB and grad B drift effects not yet
included.

— Neutral transport: Kinetic, using the Eirene
Monte Carlo code
¥ Yields edge transport coefficients,
self-consistent neutral fueling profiles

D NSTX-U

A.Diallo- TTF Annapolis 2012



Pedestal pressure height increases with shaping
(triangularity o)

Pedestal height during

6- the last 50 % of ELM cycle
5-
fr— 4_ [ }
g |
— 3.
TE ] 4
o, ¥
A 9] -
([ ] ()
1] e
] —e—®
0
0 01 02 03 04 05 06 0.7 0.8

Bottom Triangularity

Increasing shaping leads to stability limits at higher P’peq
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Stability diagram with and without lithium:
Lithium cases are farther away from the kink/peeling boundary

pedestal current ( jpeq)

pressure gradient (p 'ped)
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Stability diagram with and without lithium:
Lithium cases are farther away from the kink/peeling boundary

pedestal current ( jpeq)

pressure gradient (p ’rwd)

Consistent with NSTX close to the kink/peeling stability boundary

Lithium coatings are a useful tool for shifting peak pressure gradient inward and
stabilizing kink/peeling modes.
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Stability diagram with and without lithium:
Lithium cases are farther away from the kink/peeling boundary
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Consistent with NSTX close to the kink/peeling stability boundary

Lithium coatings are a useful tool for shifting peak pressure gradient inward and
stabilizing kink/peeling modes.
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Role of the edge density fluctuations on setting the
pedestal structure during the inter-ELM phase

¢ Pedestal gradient has been predicted to be constrained by the

onset of kinetic ballooning mode (KBM)* “Snyder PoP 9 (2002)
— Recent DIIID work has shown observations of modes localized in the
pedestal region with features similar to KBM Yan PRL 107 (2011)
— KBM characterized by:
© kupi<1

* modes have radial scales of the order few cm in the pedestal region of NSTX
 fast rising growth rate increasing with electron £
e propagation in the ion diamagnetic direction.

€ NSTX: We look for evidence of pedestal-localized microinstabilities,
and their correlation with the ELM cycle

— Use both reflectometry and BES

— Because it's hard to conclusively identify KBM, we characterize our instabilities in
terms of radial scale, wave number, and propagation direction
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Turbulent fluctuations during the inter-ELM dynamics
determined using the correlation reflectometry (UCLA)

Cutoff layers in plasma

hardware components Compute Determine
correlation function correlation lengths
n
T OF 1 9
T Source ‘<5152>‘ )\Obs
Source ‘S ‘2> <‘S ’2> r
)\turb W, 1 2
T SQ A
é Ref
or

Modeling Full wave Simulation

¢ Compare the correlation length measurements with 2D full wave
simulations to remove potential instrument function )\};W’? £ )\gbs

— density fluctuation level, equilibrium profiles, and turbulent correlation lengths.
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Radial density correlation lengths at the pedestal top and
steep gradient region

¢ The density fluctuations are
measured using a 16-channel

1-]Density Profile 20 % -40% of ELM cycle O-mode reflectometer

i with cutoff densities

. Crocker, PPCF (2011)
0.8-
] % "~ Pedestal top
L h
S
&
=, 0.4 ¢ Using two-point correlation the
c® 7 radial correlation function is
0.2 Steep gradient determined.
of the pedestal region - tracks the equilibrium plasma
motion
(L. A A
1.3 136 138 14 142 144 1.46 1.48
R[m]
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2D full wave modeling (FWR2D*) provides correspondence between

observed quantities and turbulent parameters

*Valeo, PPCF (2002)
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2D full wave simulation of correlation function inside
pedestal region reproduces measurements

T
0.9 ﬂ(
0.8_ g‘: . *

0.7
0.6—-
0.5
0.4

1 e-folding line

0.3

Correlation

® 20 % — 40 % : After ELM
0.29 %80 % — 90 % : Before ELM

0.1 W Simulation®® = 1% and A7 =1.3 cm

O e T e |

Observed correlation length corresponds to an average eddy size of ~ 1.3 cm with
fluctuation level in the vicinity of 1% in the gradient region.
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