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Summary of the pedestal structure characterization in ELMy H-
modes

Interpretive transport analysis
• SOLPS calculations
• Comparison with XGC0 - neoclassical simulations

Fluctuations characterizations during the inter-ELM phase

Preliminary δf XGC1 calculations and comparison with 
observations

Analysis of lithium effects on transport and turbulence will be 
shown in this afternoon session by D. Boyle; R. Maingi

A.Diallo- TTF Annapolis 2012NSTX-U

Characterize the pedestal structure evolutions and pedestal region 
turbulence to elucidate the role of transport in pedestal constraints
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Dedicated experiments to vary the pedestal pressure height and 
width through Ip scans were performed on NSTX 

Constant injected power (PNBI) and magnetic field (BT)
Lower single null slightly downward and fixed high triangularity shaping.
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Large drop (up to 15%) of stored energy (Wmhd) after each ELM crash.
- Pedestal stored energy ~ 25% - 40% of Wmhd

Implicitly generating scans of the pedestal structure.
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Electrons edge radial profiles are 
fitted using a modified tanh function 

Ion profiles are spline fitted

A.Diallo- TTF Annapolis 2012NSTX-U

Radial profiles of density, temperature and pressure are composite 
of times between multiple fraction of ELMs
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N(ψ) = A tanh
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ψwidth
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Temperature pedestal height increases during the ELM cycle while 
the density pedestal show no convincing trend

More than a factor 
of two increase in 
pedestal 
temperature

Density pedestal 
is much less 
sensitive to the 
ELM cycle

Heat and particle 
evolutions appear 
to be decoupled 
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Pedestal width and height progressively increase during ELM 
cycle but the peak pressure gradient remains clamped 

Pedestal height increases by a factor ≤ 3
– Height scales with Ip 
Pedestal width increases independently of Ip
Gradient is clamped early in ELM cycle
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Measured pedestal pressure width scales with √βθ

Good description of the width 
scaling over multiple machines
(DIIID, CMOD, JET, MAST) 

In NSTX, the observed width is 
larger than conventional tokamaks
- NSTX pedestal width is 1.7 and 

2.4  larger than MAST and DIII-D 
respectively
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Saturation of the gradient is ubiquitous across devices, but different 
trends in pedestal height evolution are observed
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Plasma Phys. Control. Fusion 53 (2011) 115010 D Dickinson et al
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Figure 2. Evolution of the peak electron pressure gradient during the ELM cycle. The circles show
the results from ≈50 profile measurements. The diamonds show the peak pressure gradient from
the fitted profiles shown in figure 3.

Table 1. The five mtanh fit parameters for electron pressure at t = (0.1, 0.3, 0.5, 0.7, 0.9), with
uncertainties from the least squares linear fits to the evolution of these parameters during the
inter-ELM period.

t Pe,etb (ψN) 100 Pe," (ψN) Pe,ped (Pa) Pe,slope (Pa) Pe,sol (Pa)

0.1 0.988 ± 0.0009 0.527 ± 0.027 557.5 ± 40.9 0.167 ± 0.010 0.56 ± 0.31
0.3 0.986 ± 0.0008 0.606 ± 0.026 682.5 ± 39.1 0.166 ± 0.009 0.47 ± 0.29
0.5 0.983 ± 0.0009 0.686 ± 0.029 807.6 ± 43.4 0.164 ± 0.011 0.38 ± 0.30
0.7 0.981 ± 0.0011 0.766 ± 0.035 932.7 ± 52.3 0.162 ± 0.013 0.29 ± 0.34
0.9 0.979 ± 0.0014 0.846 ± 0.042 1058. ± 63.9 0.160 ± 0.016 0.20 ± 0.40

calculated electron pressure gradient is shown in figure 3(d). The increase in Pe,ped over the
ELM cycle is mainly associated with the expansion in "Pe , and only partly with a modest
increase in the pressure gradient, which increases by <20% over the ELM cycle. The high
pressure gradient pedestal region expands during the ELM cycle: the innermost surface where
dp/d#N > 10 kPa moves inwards from #N = 0.975 at t = 0.1 to #N = 0.95 at t = 0.9, while
the location of the peak pressure gradient also moves inwards from #N = 0.988 at t = 0.1
to #N = 0.978 at t = 0.9 (where t denotes normalized time during the ELM cycle). Similar
observations were made during regular type I ELM-ing periods in other plasma scenarios on
MAST, DIII-D [14] and AUG [25].

3. MHD stability limits during the ELM cycle

Measured electron temperature and density profiles were used to reconstruct MHD equilibria
to describe the edge plasma with high precision. Five such equilibria were produced to span
the ELM cycle. Pressure profiles were obtained from the ne and Te profiles of figure 3 and
model profiles for ion temperature and density, as ion measurements were not available with
sufficient temporal and spatial resolution. A uniform effective charge state, Zeff = 2 3, was

3 Zeff = 2 is consistent with typical experimental values in the MAST pedestal. The core Zeff is typically in the
range 1–1.5.
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Figure 12. Time evolution of electron pressure pedestal parameters
obtained from composite ELM cycles. Circles and triangles are
obtained from tanhfits to profiles for low (4.7 MW) and high
(6.9 MW) power cases, respectively. Solid lines are fits to data from
exponential functions discussed in the text. (a) Electron pressure
pedestal width, (b) maximum gradient of electron pressure in
pedestal and (c) electron pressure pedestal height.

mentioned difficulties of characterizing the pedestal behaviour
during the ELM cycle, the generality of these results is
not yet as well studied as for the initial ELM-free H-mode.
However, these results are thought to provide a picture of
typical recovery from an ELM and provide a framework for
further studies. In general, pedestal parameters change rapidly
in the initial recovery phase after an ELM. For longer ELM
cycles, approach to steady state may be observed in many of
the parameters. However, achievement of a complete steady
state in all parameters is rarely, if ever, observed. Another
robust feature is the tendency for the density width to increase
throughout the recovery period. There is no evidence for any
pedestal widths to decrease during this period.

4. Correlation between pedestal parameters in
ELM-free H-mode

During ELM-free periods and during the inter-ELM periods,
several parameters change in a correlated way. One physics
question is whether there is an underlying relationship between
some of these parameters. For instance, as will be discussed
in section 5.3, some theories predict that the pedestal width
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Figure 13. Waveforms from an H-mode discharge which had two
long ELM-free periods, denoted by the vertical lines. Pair of vertical
lines on the left denotes the first period, which is studied here, and
pair of vertical lines on the right denotes the second ELM-free
period for study. (a) Electron density pedestal height, (b) electron
density pedestal width measured in units of normalized poloidal
flux, (c) square root of the electron temperature pedestal height,
(d) square root of total pedestal poloidal beta (ion beta assumed
equal to electron beta) and (e) divertor Dα signal.

is related to the ion toroidal or poloidal gyroradius. In
addition, experimental measurements have shown a correlation
of various pedestal width parameters, observed just before the
ELM onset, with pedestal beta toroidal βT or beta poloidal
βp [36–40]. In this section, the temporal evolution during
the ELM-free H-mode is used to look for correlations of
#ne with nPED

e , the pedestal temperature and pedestal beta
poloidal.

A first step in this study is to look for the correlations
between these parameters in a discharge with two distinct
ELM-free periods, as shown in figure 13. The Dα signal
(figures 13(e)) shows that the ELM-free periods occurred
from ∼1490 to 1850 ms and from 2280 to 2990 ms. During
each of these periods, there were approximately monotonic

11

of fits



Summary of the Pedestal structure characterization in ELMy H-
modes

Interpretive Transport Analysis
• SOLPS calculations
• Comparison with XGC0 - neoclassical simulations

Fluctuations characterizations during the inter-ELM phase

Preliminary δf XGC1 calculations and comparison with 
observations

Summary/Discussion
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Characterize the pedestal structure evolutions and pedestal turbulence to 
elucidate the role of transport setting the pedestal structure
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2D SOLPS* modeling shows modest variations of the transport 
coefficients at the pedestal top
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2 /s)

Particle flux at the pedestal top is insignificant during the inter-ELM 
No clear trend for the electron heat flux
Ion heat flux becomes larger later in the ELM cycle

*R. Schneider et al, Contrib. Plasma Phys. 46 (2006) 
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Ion heat diffusivity comparison: SOLPS and XGC0

Neoclassical ion diffusivity remains unchanged during the inter-ELM phase 
in the pedestal region
In the pedestal region SOLPS shows larger than neoclassical ion diffusivity
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modes

Interpretive Transport Analysis
• SOLPS calculations
• Comparison with XGC0 - neoclassical simulations

Fluctuations characterizations during the inter-ELM phase

Preliminary δf XGC1 calculations and comparison with 
observations

Summary/Discussion

A.Diallo- TTF Annapolis 2012NSTX-U

Characterize the pedestal structure evolutions and pedestal turbulence to 
elucidate the role of transport setting the pedestal structure
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BES yields measurements of the poloidal correlation
at the density pedestal top 
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Modest change in poloidal correlation length during the inter-ELM phase
– Poloidal correlation length corresponds to toroidal mode number (rkθ/q) n = 2 - 3
Measurements show ion scale fluctuation in the pedestal top

A.Diallo- TTF Annapolis 2012NSTX-U

BES provides measurements of the poloidal correlation length and 
poloidal velocity
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Evolution of the radial displacement power spectra indicates an 
increase of the fluctuation level during the last 40% of ELM cycle
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Evolution of the radial displacement power spectra indicates an 
increase of the fluctuation level during the last 40% of ELM cycle
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Radial correlation lengths at the pedestal top and steep gradient during 
the inter-ELM phase        

Radial correlation is valuable as it provides the spatial size of a turbulent perturbation 
(i.e. eddy).
Pedestal top correlation length is larger than that of the region of steep density 
gradient
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Radial correlation length evolution depends on location 
inside pedestal region 

Radial correlation length 
increases at the pedestal 
top
• A factor of 2 increase during 

the last 50% of ELM cycle
• Presumably due to the 

increase in radial 
displacement fluctuations

Steep gradient correlation 
length is unchanged 

Quantify the geometric effects 
on the measured correlation?
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Summary of the Pedestal structure characterization in ELMy H-
modes

Interpretive Transport Analysis
• SOLPS calculations
• Comparison with XGC0 - neoclassical simulations
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Preliminary δf XGC1 calculations and comparison with 
observations
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Characterize the pedestal structure evolutions and pedestal turbulence to 
elucidate the role of transport setting the pedestal structure
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Preliminary simulations using XGC1 are performed for cases 
during the last part of the ELM cycle

δf mode in XGC1
– 200 x 60 spatial grid
– simulation box up to ψn ~ 0.95 

to include the unstable region

Collisions and flows are not 
included in this simulation

 Adiabatic electrons

Probing the fully nonlinear 
phase of the simulations

Full-f simulation in the 
whole edge with kinetic 
electrons, flows, and 
collisions will be performed.
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Preliminary simulations using XGC1 are performed for cases 
during the last part of the ELM cycle

δf mode in XGC1
– 200 x 60 spatial grid
– simulation box up to ψn ~ 0.95 

to include the unstable region

Collisions and flows are not 
included in this simulation

 Adiabatic electrons

Probing the fully nonlinear 
phase of the simulations

Full-f simulation in the 
whole edge with kinetic 
electrons, flows, and 
collisions will be performed.
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Preliminary simulations from XGC1 show localized fluctuations 
with experimental level radial and poloidal correlation lengths   
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Summary (I)

Using ELMy discharges, we observed during the ELM cycle:
– Continuous increase of the electron temperature and much less variation in 

electron density and pressure build up and at time saturation prior to the ELM 
onset

– Consistent with barrier expansion phenomenology observed in other 
tokamaks

– Pressure gradient, however, is clamped during most of the ELM cycle 
Interpretive transport analysis using SOLPS, and XGC1
– No convincing correlation between the electron heat flux and ELM cycle 
– Ion heat flux is larger in the pedestal region late in the ELM cycle

• In addition, Ion heat flux larger than neoclassical estimates from XGC0
– Particle flux throughout remains difficult to assess
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Summary (II)

Characterization of the fluctuations during the inter-ELM phase
– BES and reflectometry confirm ion scale turbulence 0.2 ≤  k⊥ρi  ≤ 0.7 
– Poloidal correlation is larger than radial correlation length
Preliminary simulations with XGC1 are performed
– Used in δf mode in XGC1
– Thus far, simulation results correlation lengths measurements agree with experimental 

observations
» Most unstable mode is ITG in simulation: identification of turbulence in 

experiment, however, will require full-f XGC1.
» Addition of electrons and flows will give a better sense of the heat 

transport responsible for clamping the pedestal gradient
More work: A continuation and expansion of these comparisons to simulations with 
the ultimate goal of identification of types of turbulence
– Further 3D analysis of reflectometry are underway to verify the 2D approximation 

initially performed 
• How well the diagnostic determine the true radial correlation length

– Extend the simulation to full-f mode using XGC1 and account for measured flows 
and add collision.
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Backup
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Using TRANSP, no significant change in the electron heat 
diffusivity at the pedestal prior to the onset of ELM

Bottom half of the pedestal suggests that paleoclassical transport could be a major contributor 
to the electron heat transport, but not at the pedestal top.
In the pedestal top, neoclassical heat diffusivities appear to overestimate the experimental 
ionχ. 
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Using TRANSP, no significant change in the electron heat 
diffusivity at the pedestal prior to the onset of ELM

Bottom half of the pedestal suggests that paleoclassical transport could be a major contributor 
to the electron heat transport, but not at the pedestal top.
In the pedestal top, neoclassical heat diffusivities appear to overestimate the experimental 
ionχ. 
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The trends during the inter-ELM phase in heat diffusivities are 
difficult to unravel
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Using both BES and correlation reflectometry, the inter-ELM spatial 
structure of fluctuations exhibit ion-scale microturbulence 

26

Strong anisotropy of the turbulence is observed during the inter-ELM phase

Turbulence data suggests microturbulence with 0.2 ≤ k⊥ρi   ≤ 0.7 propagating in ion 
diamagnetic direction
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Apparent correlation between the magnetic shear at the pedestal 
top and fluctuations amplitude increase during the ELM cycle
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ITG drives peaks at the pedestal top and R/LTI is larger than R/LTI_crit

Jenko’s approximation suggests ITG could be unstable in the 
pedestal top.
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2-D interpretive modeling with SOLPS*
Solves conservation equations for
– Density, parallel momentum of each charge 

state, electron energy, ion energy, charge

Includes models for plasma transport  
– Parallel: classical along field lines

• with particle and heat fluxes limited to 
simulate kinetic effects

– Radial: D,χ adjusted to fit  measured 

plasma density and temperature profiles.
– ExB and grad B drift effects not yet 

included.
– Neutral transport: Kinetic, using the Eirene 

Monte Carlo code

Yields edge transport coefficients, 
self-consistent neutral fueling profiles

*R. Schneider et al, Contrib. Plasma Phys. 46 (2006) 3.
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Pedestal pressure height increases with shaping
(triangularity δ)
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Stability diagram with and without lithium:
Lithium cases are farther away from the kink/peeling boundary 
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Stability diagram with and without lithium:
Lithium cases are farther away from the kink/peeling boundary 

Consistent with NSTX close to the kink/peeling stability boundary
Lithium coatings are a useful tool for shifting peak pressure gradient inward and 
stabilizing kink/peeling modes.
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Stability diagram with and without lithium:
Lithium cases are farther away from the kink/peeling boundary 

Consistent with NSTX close to the kink/peeling stability boundary
Lithium coatings are a useful tool for shifting peak pressure gradient inward and 
stabilizing kink/peeling modes.
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Role of the edge density fluctuations on setting the 
pedestal structure during the inter-ELM phase

Pedestal gradient has been predicted to be constrained by the 
onset of kinetic ballooning mode (KBM)*
– Recent  DIIID work has shown observations of modes localized in the 

pedestal region with features similar to KBM
– KBM characterized by:

• k⊥ρi < 1 
• modes have radial scales of the order few cm in the pedestal region of NSTX
• fast rising growth rate increasing with electron β
• propagation in the ion diamagnetic direction.

NSTX: We look for evidence of pedestal-localized microinstabilities, 
and their correlation with the ELM cycle  
– Use both reflectometry and BES
– Because it’s hard to conclusively identify KBM, we characterize our instabilities in 

terms of radial scale, wave number, and propagation direction
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Yan PRL 107 (2011)

*Snyder PoP 9 (2002)
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Turbulent fluctuations during the inter-ELM dynamics 
determined using the correlation reflectometry (UCLA)

Compare the correlation length measurements with 2D full wave 
simulations to remove potential instrument function
– density fluctuation level, equilibrium profiles, and turbulent correlation lengths.
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Radial density correlation lengths at the pedestal top and  
steep gradient region

The density fluctuations are 
measured using a 16-channel 
O-mode reflectometer

Using two-point correlation the 
radial correlation function is 
determined.
- tracks the equilibrium plasma 

motion
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2D full wave modeling (FWR2D*) provides correspondence between 
observed quantities and turbulent parameters 

Density fluctuations are generated 
using a model based gaussian 
distribution
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Kramer RSI 74 (2003)

 Simulation of turbulence parameters mapping 
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2D full wave simulation of correlation function inside 
pedestal region reproduces measurements
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Observed correlation length corresponds to an average eddy size of ~ 1.3 cm with 
fluctuation level in the vicinity of 1% in the gradient region.
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