Recent Research On High-Confinement, Stationary Operating Scenarios Without ELMs for ITER and Beyond S.P. Gerhardt (PPPL)

JRT Steering Committee:

M. Fenstermacher (LLNL) , A. Garofalo (GA), A. Hubbard (MIT), R. Maingi (PPPL),
D. Whyte (MIT)

National Team of Contributors:

K.H. Burrell, T.E. Evans, N. Ferraro, T.H. Osborne, P. Snyder General Atomics
K. Tritz Johns Hopkins University
R.M. Churchill, M. Greenwald, N. Howard, J. Hughes, E. Marmar, C. Sung, C. Theiler, J. Walk, A. White Massachusetts Institute of Technology
J. M. Canik M.W. Shafer Oak Ridge National Laboratory
D.J. Battaglia, R.E. Bell, A. Diallo, A. Dominguez, R.J. Goldston, B.A. Grierson, W. Guttenfelder, B.P. LeBlanc, Raffi Nazikian, Y. Ren, F. Scotti, W.M. Solomon Princeton Plasma Physics Laboratory
S. Kubota, N. Crocker University of California, Los Angeles
I. Cziegler, D. M. Orlov University of California, San Diego
S. Parker, W. Wan University of Colorado, Boulder
D.R. Smith, G. McKee, Zheng Yan University of Wisconsin-Madison

TTF Meeting
San Antonio
April 22, 2014

ITER Needs To Operate Without Uncontrolled Type-I ELMs

- Good confinement H-modes are typically accompanied by type-I ELMs
- Uncontrolled ELMs are projected to limit the lifetime of the divertor
- However, must maintain the impurity flushing qualities of ELMs
- Otherwise, the particle confinement in H -mode will result in unacceptable core impurity content

Domain of acceptable uncontrolled ELMs as a function of ELM wetted area and plasma current

A. Loarte, NF 54, 033007 (2014)

Numerous Strategies Are Under Development for Managing ELMs in ITER

- Achieve rapid ELMs via pacing techniques.
- Pellet pacing most prominent example...
- ...but also vertical jogs
- Relies on the peak heat flux to decrease as ~1/f
- Replace ELMs with quasicontinuous edge fluctuations that drive particle transport
- Achieve a beneficial separation between particle and energy transport
- bad particle confinement is good
- QH-mode, I-mode
- Suppress ELMs entirely
- ELM suppression via RMP in DIII-D

Rapid Pellet Injection Can "Pace" ELMs

Resonant Magnetic
Perturbations Suppress ELMs

Some Common Questions Link the Various ELM Control Schemes

- Q1: Can these regimes be understood in terms of the standard peeling-ballooning \& KBM models?
- These models work well for ELMy H-mode
- Q2: Can these regimes be achieved at high(er) density?
- Q3: Can they provide the required particle and impurity transport in future tokamak systems?
- Q4: Access with ITER relevant parameters and constraints?
- Q5: Can we understand and control regimes with edge thermal confinement significantly better than H -mode?

And of course each scheme has a specific list of questions, which will be addressed throughout the talk

Outline: Multi-Facility Research Milestone in 2013 Addressed

 Stationary High-Performance Regimes w/o Large ELMs- Introduction
- Reminder: Key pedestal physics considerations
- Regimes with continuous edge fluctuations
- Quiescent H-mode
- I-Mode
- Recent research on RMP ELM Suppression
- A very high confinement regime: the EP H-mode in NSTX
- Regime comparisons and answers to the five broad questions

Presentation will Concentrate on Results Collected as Part of the Milestone Research

Only DIII-D Operated During FY-2013; Analysis of Existing Data from C-MOD and NSTX was a Key Component of Research

Exercise

Outline: Multi-Facility Research Milestone in 2013 Addressed Stationary High-Performance Regimes w/o Large ELMs

- Introduction
- Reminder: Key pedestal physics considerations
- Regimes with continuous edge fluctuations
- Quiescent H-mode
- I-Mode
- Recent research on RMP ELM Suppression
- A very high confinement regime: the EP H-mode in NSTX
- Regime comparisons and answers to the five broad questions

Type-I ELM Dynamics Often Understood In Terms of PeelingBallooning Stability

- Edge pedestal has steep gradients in the kinetic profiles located just inside the separatrix
- Steep gradients result in localized currents
- Localized currents and pressure gradients destabilize MHD modes in the pedestal
- Modes span the full pedestal
- Typically yields a stability boundary as $\beta_{\text {ped }} \sim \Delta^{3 / 4}$

When a Transport Constraint is Added, a Predictive Model for the Pedestal Can be Derived

- Postulate that pedestal transport between ELMs is determined by Kinetic Ballooning Modes (KBMs)
- Yields a dependence as $\Delta \sim \beta_{\mathrm{P}}{ }^{1 / 2}$, or $\beta_{\mathrm{P}} \sim \Delta^{2}$
- Consistent with many experiments
- Combine the peeling ballooning constraint, the KBM constraint, and predefined profile shapes to make a model for the pedestal height
- Inputs are field and current, shape parameters, pedestal density, global β

P. B Snyder, NF 51103016 (2011)

Outline: Multi-Facility Research Milestone in 2013 Addressed Stationary High-Performance Regimes w/o Large ELMs

- Introduction
- Reminder: Key pedestal physics considerations
- Regimes with continuous edge fluctuations
- Quiescent H-mode
- The I-Mode Regime
- Recent research on RMP H-mode
- A very high confinement regime: the EP H-mode in NSTX
- Regime comparisons and answers to the five broad questions

The Quiescent H-Mode Provides Particle Control Through an Edge Fluctuation Called the Edge Harmonic Oscillation

- Key QH-Mode characteristics
- ELMs are replaced by a continuous edge oscillation
- Good confinement is maintained
- Density and radiated power is controlled
- Achieved with co- or counter- torque

The Quiescent H-Mode Provides Particle Control Through an Edge Fluctuation Called the Edge Harmonic Oscillation

- Key QH-Mode characteristics
- ELMs are replaced by a continuous edge oscillation
- Good confinement is maintained
- Density and radiated power is controlled
- Achieved with co- or counter- torque
- QH-mode operates on the peeling boundary
- EHO is thought to be a saturated peeling mode

The Quiescent H-Mode Provides Particle Control Through an Edge Fluctuation Called the Edge Harmonic Oscillation

- Key QH-Mode characteristics
- ELMs are replaced by a continuous edge oscillation
- Good confinement is maintained
- Density and radiated power is controlled
- Achieved with co- or counter- torque
- QH-mode operates on the peeling boundary
- EHO is thought to be a saturated peeling mode
- EHO spans the width of the pedestal.
- Many harmonics visible with BES

The Quiescent H-Mode Provides Particle Control Through an Edge Fluctuation Called the Edge Harmonic Oscillation

Key questions addressed in JRT 2013 research:

- Is QH mode accessible at high density \&/or Greenwald Fraction?
- How well does EPED capture the pedestal scaling as a function of density?
- How well does the EHO flush impurities?
- Can it be achieved with ITER relevant parameters \& performance?

Stronger Shaping Allows Access to Higher Density QH-Modes

- P.-B. theory showed that increasing triangularity could make more of the peeling boundary accessible
- Plasma density raised by gas puffing
- Higher absolute density achieved with stronger shaping
- Greenwald fractions up to 0.8 have been achieved

EPED Modeling Can Reproduce the Pedestal Trends in QHMode as a Function of Density

- Recall: EPED is based on simultaneous constraints from transport and stability

EPED accurately predicts the increase in pedestal height as a function of density

DIITO

EPED accurately predicts the trend in the pedestal width as a function of density

W. Solomon, et al, APS-DPP 2013

The EHO Can Exhaust Impurities Just as Well as Type 1 ELMs

- Mixture of 90% deuterium and 10 \% carbon-tetraflouride introduced through a gas valve
- Charge exchange emission from F-IX used to monitor impurity content

Impurity Confinement in QH-Mode vs. ELMing H-Mode

QH-mode case, with an EHO, exhausts impurities more rapidly

> QH-Mode impurity confinement independent of torque

B.A. Grierson, et al., submitted to Nuclear Fusion

QH-Mode Has been Sustained at the ITER q_{95} in Recent DIII-D Research

- But required some counter-torque to avoid locked-modes
- Raising q_{95} allowed for a reduction in the counter-torque w/o locked modes
- Both raising the density and improved error field correction are promising for allowing low- q_{95} high performance QH-mode

Pedestal Stability Calculation Indicate ITER Will Operate on the Peeling Boundary

- Calculations indicate that ITER will be on the peeling boundary for densities up to $1.2 \times 10^{20} \mathrm{~m}^{-3}$
- ITER’s pedestal will be in the collisionality and density range for QH-mode operation

Outline: Multi-Facility Research Milestone in 2013 Addressed Stationary High-Performance Regimes w/o Large ELMs

- Introduction
- Reminder: Key pedestal physics considerations
- Regimes with continuous edge fluctuations
- Quiescent H-mode
- I-Mode
- Recent research on RMP ELM suppression
- A very high confinement regime: the EP H-mode in NSTX
- Regime comparisons and answers to the five broad questions

The C-MOD I-Mode Regime Combines an H-mode Temperature Profile w/ an L-mode Density Profile

Similar Density Profiles in L- and I-modes.

J. Walk, APS 2013

- Can access ITER-relevant confinement at the correct q_{95}

Higher T_{e} in I-mode, with Formation of Edge Pedestal

A. Hubbard, et al., 2012 FEC
 Note: the scaling exponents utilized in the ITER-98(y,2) scaling expression do not capture the I-mode dependencies

- I-mode exhibits minimal/no power degradation
- In contrast to $\tau_{98} 1_{p} P^{-0.7}$ (or W~1pP0.3)
Accator C-Mod

Weakly Coherent Mode Provides Density Control in C-MOD I-Modes

- Low frequency fluctuations reduced at L-I, but mid-frequency fluctuations increase.

$\chi_{\text {i,eff }}$ evaluated for $0.95<\psi_{N}<1.0$
A. Hubbard, et al., Phys. Plasmas 18, 056115 (2011)

Frequency	$100-400 \mathrm{kHz}$
Spread $(\delta \mathrm{f} / \mathrm{f})$	$\sim 0.25-0.5$
Peak amplitude $\delta \mathrm{n}_{\mathrm{e}} / \mathrm{n}_{\mathrm{e}}$	$\sim 5-10 \%$
Peak amplitude $\delta \mathrm{T}_{\mathrm{e}} / \mathrm{T}_{\mathrm{e}}$	$\sim 1-2 \%$

Both higher frequency, and less coherent, than the EHO observed in QH-mode

Weakly Coherent Mode Provides Density Control in C-MOD IModes

Questions Addressed by Recent Research

- Can the I-mode regime be accessed in DIII-D in addition to C-Mod and AUG?
- How do the I-mode plasmas fit within the standard peeling/ballooning and/or KBM picture of the pedestal?
- What determines, and limits, the I-mode pedestal density and temperature?

I-Modes Have Been Found in DIII-D

- Experiments with power ramps in configuration with unfavorable grad-B drift direction.
- Increased power required to access H-mode, helps open the I-mode access window.

Temperature increases by a larger fraction than the heating power

DIII-D I-mode Profiles Show L-mode Like Density Profiles, but Increases in $\mathrm{T}_{\mathrm{e}, \mathrm{ped}}$

T_{e} pedestal forms w/o an increased density pedestal

Pedestal Widths are Typically Broader than in H-Mode

- Type-I ELMy H-mode typically shows pedestal width scaling as $\beta_{P}^{1 / 2}$
- I-mode pedestals are consistently broader than predicted for KBM limited pedestals
- Breaks a fundamental assumption of the EPED model, suggesting that these Imodes are not determined by the same physics as H-modes

C-MOD: Pedestal width vs. β_{P}

DIII-D: Pedestal width vs. $\beta_{\mathrm{P}}^{1 / 2}$

I-Mode Pedestal Gradients Are Consistently Found To Be Beneath Pedestal Macrostability Limits

C-MOD

ELITE calculations show that the pedestal is well away from the computed peeling/ballooning boundaries

DIII-D

I-mode pedestals evaluated to be well below the peeling/ballooning \& infinite-n stability limits

It may be possible to further optimize the I-mode confinement regime for higher pedestal pressure.

Recent Analysis of C-MOD Data Shows a Potential Path to I-Mode Performance Optimization

- Power/particle sets the pedestal temperature
- Pedestal pressure $\sim P_{\text {net }}$

Recent Analysis of C-MOD Data Shows a Potential Path to I-Mode Performance Optimization

- Power/particle sets the pedestal temperature
- Pedestal pressure $\sim P_{\text {net }}$
- I-modes plasma can be "densified" following the L->I transition

Recent Analysis of C-MOD Data Shows a Potential Path to I-Mode Performance Optimization

- Power/particle sets the pedestal temperature
- Pedestal pressure $\sim P_{\text {net }}$
- I-modes plasma can be "densified" following the L->I transition
- Pedestal pressure can be controlled by these actuators
- Fueling can be used to increase the pedestal pressure, provided sufficient power is available
- Adjust the power level to achieve the same pedestal temperatures

Line Average Density [m^{-3}]
1.0×10^{20}
1.3×10^{20}
1.7×10^{20}
Net Power [MW]
2.75
3.65
4.10

Recent Analysis of C-MOD Data Shows a Potential Path to I-Mode Performance Optimization

- Power/particle sets the pedestal temperature
- Pedestal pressure $\sim P_{\text {net }}$
- I-modes plasma can be "densified" following the L->I transition
- Pedestal pressure can be controlled by these actuators
- Fueling can be used to increase the pedestal pressure, provided sufficient power is available
- Adjust the power level to achieve the same pedestal temperatures

Potential Recipe:

- Transition to I-mode at lower density
- Fuel to higher density, using sufficient external/internal heating to maintain high $\mathrm{T}_{\mathrm{e}, \mathrm{ped}}$
- Use these actuators to control the pedestal beneath the low-n peeling/ballooning boundary

Caveat:

- Power limit set by transition to H-mode, not global stability
- Avoiding the transition to H -mode is a topic of present research

Outline: Multi-Facility Research Milestone in 2013 Addressed Stationary High-Performance Regimes w/o Large ELMs

- Introduction
- Reminder: Key pedestal physics considerations
- Regimes with continuous edge fluctuations
- Quiescent H-mode
- I-Mode
- Recent research on RMP ELM Suppression
- A very high confinement regime: the EP H-mode in NSTX
- Regime comparisons and answers to the five broad questions

Complete Suppression of ELMs Has Been Observed in DIII-D RMP Experiments

- $\mathrm{RMP}=$ resonant magnetic perturbations
- Have been observed to suppress ELMs in ITER-relevant low collisionality
- Hypothesized to generate islands and/or stochastic regions at the pedestal top that limit the growth of the pedestal
- ITER coil designed assuming that the resulting region of island overlap is larger than some minimum value
- Incomplete understanding of the physics elements
- Fields applied in DIII-D using off-midplane internal coils, typically with $n=3$ toroidicity
- Key question addressed in recent research:
- What is the impact of missing coils on the ability to control ELMs w/ RMP?
- Motivated by possibility of failure of internal DIII-D coil in ITER

ELM Suppression with $\mathrm{n}=3$ RMP in DIII-D

DIII-D I-Coil

For a more general discussion of RMP issues, see recent BPO webinar by T. Evans.

ELM Suppression Can Be Achieved in DIII-D With Fewer than 12 I-Coils

D. Orlov, APS Invited 2013

ELM Suppression Can Be Achieved in DIII-D With Fewer than 12 I-Coils

11 Coil Example: Suppression @ $I_{\text {I-coil }}=2.3$ kA

$$
P_{\mathrm{inj}}=5.9 \mathrm{MW}
$$

D. Orlov, APS Invited 2013

ELM Suppression Can Be Achieved in DIII-D With Fewer than 12 I-Coils

$$
P_{\mathrm{inj}}=4.5 \mathrm{MW}
$$

Reference 12 Coil Example: Suppression @ $I_{1-c o i l}=2.9 \mathrm{kA}$

ELM Suppression Can Be Achieved in DIII-D With Fewer than 12 I-Coils

8 Coil Example: Suppression @ $\mathrm{I}_{\text {I-coil }}=2.85 \mathrm{kA}$

Coils turned off pseudorandomly

$$
P_{\mathrm{inj}}=5.9 \mathrm{MW}
$$

D. Orlov, APS Invited 2013

ELM Suppression Can Be Achieved in DIII-D With Fewer than 12 I-Coils

5 Coil Example: Suppression @ $\mathrm{I}_{\text {I-coil }}=3.95 \mathrm{kA}$

Coils turned off pseudorandomly

$$
P_{\mathrm{inj}}=5.9 \mathrm{MW}
$$

D. Orlov, APS Invited 2013 Suppression with 5-12 I-Coils in DIII-D

- Elimination of coils results in $\mathrm{n} \neq 3$ sidebands...do these sidebands play a role in increasing the edge stochasticity?
D. Orlov, APS Invited 2013

Vacuum Approximation Modeling Indicates that the Sidebands Help Maintain a Stochastic Boundary

$\mathrm{n}=3$ vacuum islands decrease when coils are turned off Other $n(n=1,2,4 \ldots)$ islands grow in size

Vacuum Island Overlap Width value stays close to ITER criterion of VIOW~0.165 in all configurations

Vacuum Calculations Show that the Island Overlap Width is Similar in All Cases with ELM Suppression

- Inclusion of sidebands is critical in determining the full overlap width

D. Orlov, APS Invited 2013

Two-Fluid MHD Calculations with M3D-C ${ }^{1}$ Indicate the Importance of $\mathrm{n} \neq 3$ Sidebands

- M3D-C ${ }^{1}$ calculates linear 2-fluid MHD response including rotation
- Shows both screening and amplification of the resulting perturbations

Calculations testing the limit

- $|\delta B|_{n=3}$ field decreases as coils are removed of linear model
- $|\delta B|_{n=1}+|\delta B|_{n=2}+|\delta B|_{n=3}+|\delta B|_{n=4}$ increases with number of coils
N. Ferraro, D. Orlov, APS Invited 2013

Cases With ELM Suppression Show Pedestal Heights Beneath the EPED Prediction

- No (or small) RMP current \rightarrow pedestal height matches EPED prediction
- ELM suppression \rightarrow pedestal height beneath EPED prediction

Note: Density pump-out results in lower pedestal density with RMP application
Consistent with model where the RMP limits the pedestal width
P. Snyder, et al., Phys. Plasmas 19 (2012)
R. Nazikian, APS 2013
D. Orlov, APS Invited 2013

Outline: Multi-Facility Research Milestone in 2013 Addressed Stationary High-Performance Regimes w/o Large ELMs

- Introduction
- Reminder: Key pedestal physics considerations
- Regimes with continuous edge fluctuations
- Quiescent H-mode
- I-Mode
- Recent research on RMP ELM suppression
- A very high confinement regime: the EP H-mode in NSTX

Regime comparisons and answers to the five broad questions

The Enhanced Pedestal H-mode is a High-Confinement Regime in the Spherical Torus

Characteristics of the Enhanced Pedestal (EP) H -mode.

- Edge region where the T_{i} gradient is much steeper than in H -mode.
- T_{i} gradient associated with a region of strong toroidal flow shear
- often a very narrow minima in the flow.
- The transition to this regime occurs after the L->H transition.
- often follows on ELM.
T_{i} vs. Major Radius

(ID) NSTX Upgrade

Questions to be Addressed by Recent Research

- Can the configuration be sustained?
- Is there a reduction in turbulence during this phase?
- Is the transport dominantly neoclassical in this phase?

Long-Pulse, Quiescent EP H-modes Have Been Observed

(II) NSTX Upgrade

Early Examples

Strong stored energy ramps following transition, but short lived
(R. Maingi, et al., JNM 2009)

Long-Pulse, Quiescent EP H-modes Have Been Observed

(II) NSTX Upgrade

Early Examples

Strong stored energy ramps following transition, but short lived (R. Maingi, et al., JNM 2009)

First Extended EP H-mode Demonstrated high confinement for many confinement times
(R. Maingi, et al, Phys. Rev. Lett., 2010)

Long-Pulse, Quiescent EP H-modes Have Been Observed

(11) NSTX Upgrade

Early Examples

Strong stored energy ramps following transition, but short lived (R. Maingi, et al., JNM 2009)

First Extended EP H-mode Demonstrated high confinement for many confinement times
 (R. Maingi, et al, Phys. Rev. Lett., 2010)
 Quiescent Long-Duration EP H-mode

Configuration maintained for duration of NB heating Very quiescent
(S.P. Gerhardt, et al., submitted to Nuclear Fusion, 2014)

Density rise typically due to accumulation of C impurities in these cases Stationarity typically not achieved in NSTX
 discharges

JRT Research Demonstrated That a Wide Variety of Profile Shapes Can Fit in the "EP H-mode" Category

Most of the Energy Increment in EP H-mode is Contained in the lons

- Compare electron and ion energy increases following the EP H-mode transition
- $\sim 75 \%$ of the stored energy increase is in the ion channel.
- Maximum temperature gradient scales with the rotation gradient.
- Speculate: rotation shear is quenching the residual ion-scale turbulence?

(011) NSTX Upgrade
S.P. Gerhardt, et al., submitted to Nuclear Fusion (2014)

Ion Energy Increment vs. Total Energy Increment

Electron Energy Increment vs. Total Energy Increment

Measured Density Fluctuation Amplitude Does Not Decrease Following the EP H-mode Transition

- Density fluctuations measured with Beam Emission Spectroscopy (BES) channel in the steep T_{i} gradient region

(11) NSTX Upgrade

Simple Neoclassical Transport Calculation Under-predicts T_{i} Gradient in the Steep Gradient Region in EP H-mode

- Method
- Use measured profiles of $T_{e}, n_{e}, n_{C}, n_{D}, V_{\Phi}$
- Use the Chang-Hinton model within TRANSP to predict the T_{i} profile

Gradient Region:

Shifted Substantially In

$\begin{array}{llllll}0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0\end{array}$

- T_{i} (and its gradient) is underestimated in all three cases.
- Working on repeating this comparison with full neoclassical physics using XGC-0

Outline: Multi-Facility Research Milestone in 2013 Addressed Stationary High-Performance Regimes w/o Large ELMs

- Introduction
- Reminder: Key pedestal physics considerations
- Regimes with continuous edge fluctuations
- Quiescent H-mode
- I-Mode
- Recent research on RMP ELM suppression
- A very high confinement regime: the EP H-mode in NSTX
- Regime comparisons and answers to the five broad questions

All Regimes Under Consideration Have Shown Good Confinement and Access to Low Collisionality

- Representative but incomplete data sets shown.
- Symbols for machines and colors for regimes:
- DIII-D RMP
- DIII-D QH-Mode

I-Modes

- Dill-D
- NSTX EP H-Mode \times C-Mod
- RMP, QH-mode, and C-Mod Imode have achieved $\mathrm{H}_{98(\mathrm{y}, 2)} \sim 1$ at ITER-relevant q_{95}
- All regimes have demonstrated compatibility with lowcollisionality pedestals
- Unlike type-V ELMs (NSTX), EDA H-mode (C-Mod)
(11) NSTX Upgrade

멘
C-Mod

There has been Success at Raising the Density in These Regimes

- QH-mode densities up to $\mathrm{f}_{\mathrm{GW}}=0.8$
- Facilitated by strong shaping, used strong ramps and were not optimized
- C-Mod I-modes at $\mathrm{f}_{\mathrm{GW}}=0.35$
- Is $2 \times 10^{14} \mathrm{~cm}^{-3}$ in absolute units, so still quite high
- NSTX EP H-mode cases have high confinement at high f_{GW}

Present Results Have Answered Many of the Original Questions (I)

- Q1: Can these regimes be understood in terms of the peelingballooning \& KBM models?
- I-modes far from both the kink/peeling and KBM boundaries
- Provides room for performance extension
- DIII-D QH-modes near the peeling boundary
- EPED does a good job of predicting the pedestal parameters
- DIII-D RMP pedestals are just beneath the EPED predictions during ELM suppression
- Q2: Can these regimes be achieved at high(er) density?
- Densification of QH-mode possible for strongly shaped plasmas
- Consistent with stability theory
- Densification following the transition to I-mode is possible
- And provides part of the recipe for optimizing the I-mode regime

Present Results Have Answered Many of the Original Questions (II)

- Q3: Can they provide the required particle and impurity transport in future tokamak systems?
- I-mode: Impurity transport at L-mode levels, correlation found between WCM amplitude and particle transport
- QH-mode: EHO can flush impurities better than ELMs
- While a working physics hypothesis exists for the origin of the EHO, gyrokinetic modeling is ongoing in order to understand the WCM
- Q4: Access with ITER relevant parameters and constraints?
- All the regimes have demonstrated compatibility with low collisionality
- I-mode demonstrated with both no external torque (C-Mod) and coinjection (DIII-D)
- With graphite and Mo PFCs.
- QH-mode operated at ITER relevant q_{95} and fusion gain parameters
- Increasing density, error field correction may be powerful tools to allow operation at simultaneous ITER torque and q_{95}
- Successful RMP ELM suppression with less than the full set of coils:
- Harmonic sidebands serve to mitigate loss of the primary spectral component

Present Results Have Answered Many of the Original Questions (III)

- Q5: Can we understand and control regimes with edge thermal confinement much better than H -mode?
- Long-duration EP H-mode examples have been documented
- Rotation shear appears to play a role in determining the confinement in EP H-mode
- and in VH-mode
- Turbulence (or at least density fluctuations) appear comparable in EP H-mode and H-mode
- similar result found in VH-mode experiments in 2013.

Present Results Have Answered Many of the Original Questions (III)

- Q5: Can we understand and control regimes with edge thermal confinement much better than H -mode?
- Long-duration EP H-mode examples have been documented
- Rotation shear appears to play a role in determining the confinement in EP H-mode
- and in VH-mode
- Turbulence (or at least density fluctuations) appear comparable in EP H-mode and H-mode
- similar result found in VH-mode experiments in 2013.

Thanks for your attention!

