

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Bifurcation to Enhanced Pedestal (EP) H-mode on NSTX

D.J. Battaglia

R.E. Bell, S.P. Gerhardt, W. Guttenfelder,

S.M. Kaye, R. Maingi, D.R. Smith and the NSTX team

US/EU Transport Task Force Williamsburg, VA April 25 – 28, 2017

Outline

- Characteristics of the Enhanced Pedestal (EP) H-mode on NSTX
- Evidence for the role of ion collisionality in the bifurcation criteria
- Properties of neoclassical and anomalous transport in EP H-mode

Enhanced Pedestal (EP) H-mode discharges on NSTX bifurcate to larger H_{98(y,2)}

- EP H-mode usually triggered by type-I ELM
 - EP H-mode phase terminates with an ELM, MHD or disruption
- Two examples shown
 - NSTX Record H_{98(y,2)}: 134991
 - Longest EP H-mode: 141133
- Density increase slower than ELM-free H-mode

Majority of gain in stored energy due to increase in T_i gradient

- EP H-mode: bifurcation to a significantly larger T_i gradient
 - Typically v_{ϕ} gradients increase concurrently with T_i gradient
 - Typically reduced gradient in n_e , n_C
- Impact on T_e pedestal can vary
 - Often the T_e pedestal becomes wider
 - Sometimes the T_{e} gradient increases
- Often E_r well shifts inward

NSTX-U

135004 (2010)

Largest T_i gradients observed in discharges with large toroidal flow shear

- EP H-mode achieves largest local T_i gradients on NSTX
- Maximum dT_C/dR scales with rotation frequency gradient and I_p
 - Maximum T_i gradient tends to align with the minimum of a local E_r well

S. Gerhardt et al, NF 54, 083021 (2014)

• Flow shear enables the best performance, but is not the sole requirement for EP H-mode

-What other criteria must be met?

EP H-mode observed over a wide range of conditions on NSTX

- Transport barrier can occur at different locations – ITB-like or within H-mode pedestal
- Reduced neutral fueling is a common characteristic – Most often observed with lithium wall conditioning
- Transition most often occurs during an ELM recovery

 Observed with both natural ELMs and triggered ELMs
 - Slow transition (unlike the L-H transition)
- Most often observed at low q₉₅ (6 7)
 - Best performance at modest $q_{95} \sim 10$ that supports large $\beta_{p,ped}$ (~ 1)
- Observed over a wide range of shapes, $I_{p},\,B_{T},\,q_{95},\,\beta_{p},\,P_{NBI}$
 - EP H-mode has been observed with and without applied n=3 fields

Outline

- Characteristics of the Enhanced Pedestal (EP) H-mode on NSTX
- Evidence for the role of ion collisionality in the bifurcation criteria
- Properties of neoclassical and anomalous transport in EP H-mode

Scanning applied 3D field produced discharges around EP H-mode threshold

H-mode	EFC	141131
H-mode,	EFC + 400A	141125
EP H-mode	EFC + 500A	141133

- All discharges have a quiescent period to evaluate transport
 - Matched LSN high-triangularity shape

$$-I_{p} = 900 \text{ kA}, B_{T} = 0.45 \text{T}, q_{95} \sim 9.5$$

- Lithium wall conditioning
- 100ms time windows for all profiles
- One EP H-mode shot (black)
 - Modestly larger $\tau_{\rm E}$
 - Reduced density rise

Applied n=3 field increases edge rotation and E_r shear and reduces edge Z_{eff}

EU/US TTF 2017, Bifurcation to EP H-mode on NSTX, D.J. Battaglia, April 26, 2017

EP H-mode accesses significantly lower ion collisionality compared to H-mode

- Ion thermal transport changes with subtle change to v_{φ} and E_{r}
- Significant decrease in ion collisionality in EP H-mode

$$v_i^* \sim \frac{q R_0 n_e Z_{eff} \ln(\Lambda_{ii})}{T_i^2 (r / R_0)^{3/2}}$$

H-mode discharge close to EP H-mode threshold

Four EP H-mode discharges at "bifurcation time"

Four EP H-mode discharges at "bifurcation time"

Period of maximum confinement in five EP H-mode discharges

Steep T_i gradients align with regions of low ion collisionality

 $v_i^* \sim \frac{q R_0 n_e Z_{eff} \ln(\Lambda_{ii})}{T_i^2 (r / R_0)^{3/2}}$

New observations suggest low ion collisionality is a requirement for EP H-mode

- EP H-mode most often observed with …
 - -Lower q_{95}
 - Lower neutral fueling
 - \rightarrow lower edge n_e, larger edge T_i
- ELM events are observed to …
 - Reduce edge n_e, Z_{eff}
 - Briefly achieve larger T_i after recovery
- Below a critical v^{*}, ion thermal and momentum confinement improves in regions of moderate flow shear
 - Starts positive feedback loop, where T_i and v_{ϕ} gradients improve driving lower v_i* and more flow shear

Outline

- Characteristics of the Enhanced Pedestal (EP) H-mode on NSTX
- Evidence for the role of ion collisionality in the bifurcation criteria
- Properties of neoclassical and anomalous transport in EP H-mode

Non-local and kinetic neoclassical effects are important in EP H-mode

- Local neoclassical over-predicts χ_i in steep gradient region
 - Indicates non-local and kinetic effects must be included when evaluating NC transport
 - Future work will evaluate with neoclassical calculations (NEO, GTC-NEO, XGC0)
- Transport bifurcation at low v_i* may be due to neoclassical effects
 - For example, orbit-squeezing or nonlinear changes to viscosity

Linear CGYRO^{*} simulations predict broad spectrum of electron drift waves in pedestal region

• Predominantly trapped electron modes (TEM) driven by ∇T_e

$$(a/L_{Te} > a/L_{ne} > a/L_{Ti})$$

– Weak low- k_{θ} microtearing at some radii

- Growth rates larger than E×B shearing rates (γ_E) around steepest gradients ($\psi_N > 0.9$)
- Stabilized by ∇T_i consistent with improved confinement?
 - Similar to previous EPH-mode calculation using GS2 [Gerhardt NF, 2014] and H-mode calculations using GEM [Smith NF, 2013]

*J. Candy, E.A. Belli, JCP (2016)

decreases in EP H-mode, consistent with shift to higher frequency

 Qualitatively consistent with predicted Δω_r due to higher ∇T_i (opposite to change in V_{doppler})

Largest change observed in region

with large T_C gradient

Poloidal correlation length

BES spectrum shifts to higher frequency in

BES spectrum shifts to higher frequency, with lower ion collisionality

- Ratio of cross-power above 30 kHz increases as v_i* decreases

 Ratio does not scale as cleanly with other parameters, such as E_r or E_r'
- Shift in BES is larger than H-mode discharges at similar v_i^{\star} during ELM recovery in EP H-mode shot

Suppression of low-k modes at low ion collisionality could trigger EP H-mode

- Suppose low-n modes are stabilized at a critical v_i^*
- Gyro orbits of trapped ions in the tail of the energy distribution average over higher-n perturbations
 - Ion thermal and momentum transport sensitive to transport of deuterium ions in the tail of the energy distribution
- Improved ion thermal and momentum confinement drives v_i* lower, initiating positive feedback mechanism
 - Inspired by quantitative description of the separation of thermal and particle transport in an ITB as described by G. Staebler [PoP, 2014]

Transport bifurcation in EP H-mode similar to other high confinement scenarios

- VH-mode is a transient ELM-free scenario with large energy confinement on DIII-D
 - Most often observed following boronization
 - Broad pedestal with $H_{98y2} > 2$
 - Facilitated by large edge rotation shear
- Qualitative features in BES
 spectrum similar to EP H-mode
- EP H-mode transport barrier shares some characteristics with reverse shear ITBs

Summary

- EP H-mode is an attractive scenario for NSTX-U and future ST devices
 - Increase in ion energy and momentum confinement with beneficial increase in particle transport
- EP H-mode realized at low ion collisionality
 - Maximum dT_i/dR scales with toroidal flow shear (~ dE_r/dR)
 - Location of large dT_i/dR aligns with location of low v_i^* in the edge profiles
- Neoclassical and gyrokinetic calculations are underway to investigate mechanisms that could trigger and/or sustain EP H-mode
 - NSTX-U will further explore physics via access to lower collisionality and greater control of v_{ϕ} shear compared to NSTX

NSTX-U

Backup

EP H-mode bifurcation occurs during the recovery of T_i after an ELM

- dTi/dR, dvt/dR and v_{ii} concurrently deviate from Hmode levels
- Low v_{ii} at time of bifurcation accessed via low edge n_{e} and Z_{eff}
- Collisionality for $\psi_N < 0.95$ driven lower by increase in T_i

Consistent with total thermal transport set by tail deuterium ions at low $\nu_{\rm ii}$

XGC0 simulation of transport in a low collisionality QH-mode discharge on DIII-D

Particle transport (left column) dominated by anomalous transport, whereas energy transport (right column) dominated by kinetic neoclassical (NC) transport of deuterium ions via loss orbits of tail ions.

NSTX-U

New capabilities on NSTX-U will advance understanding and utility of EP H-mode

- Edge rotation control with tangential NBI + 3D fields – Future: NCC coils provide additional edge rotation control
- ELM control with lithium pellet injector, 3D fields
- Expanded edge Thomson and BES capabilities
- Lower collisionality via higher fields

 Also change in characteristic ion gyro and banana orbit size
- Edge instability characteristics at higher fields and aspect ratio

Applied n=3 field increases edge rotation shear and reduces edge Z_{eff}

- Increasing 3D field
 - Shallower n_e gradient
 - Reduces edge v_{ϕ}
 - Reduces E_r
 - Shifts n_c pedestal inwards
 - Reduces edge Z_{eff} and v_i^*
- EP H-mode bifurcation
 - Wider T_e pedestal
 - Steeper T_C gradient
 - Much lower v_i*
 - Subtle change to v_{ϕ} and E_{r}

H-mode, EFC + 400A, 3.9 MW NBI EP H-mode, EFC + 500A, 3.0 MW NBI