Near and far SOL divertor turbulence in **NSTX and NSTX-U L mode discharges**

2017 US/EU Transport Task Force Williamsburg, VA, April 25, 2017

F. Scotti, V. Soukhanovskii, S. Zweben (PPPL), R. Maqueda (X-Science)

Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences., Lawrence Livermore National Security, LLC

Role of turbulence vs. collisional effects in setting divertor heat flux width still unclear

- Neoclassical and turbulent transport can contribute to observed divertor heat flux width
 - Uncertainty in predictions for ITER and future tokamaks
- To increase confidence in heat flux width predictions:
 - Characterize SOL/divertor turbulence:
 - Upstream fluctuations
 - Connection of upstream turbulence to target
 - <u>Divertor localized fluctuations</u>
 - Compare with 3D turbulence simulations
 - Cf. current work with GBS, BOUT++, XGC1, etc.
 - Use validated simulations to extrapolate SOL widths

Divertor fluctuations due to upstream and divertor-localized turbulence in NSTX/NSTX-U

- Divertor fluctuations due to upstream turbulence
 - Filaments in light emission on divertor target
 - Correlation with Langmuir probes and upstream GPI
 - Extent of region with connected turbulence
- First observation of divertorlocalized turbulence in NSTX-U

3 🕓

SOL flux tube with circular cross section has ribbon structure in divertor, helical footprint at target

- Flux tube with circular cross section at LFS midplane
 - Representative of blob
 - Magnetic shear leads to ribbon structures in divertor
 - Enhanced by X-point
- Flux tube elongation could disconnect turbulence from target
 - Cross section can be ~ ρ_i
 - D. Farina, NF 1993.
- Helical target footprint

Upstream and target turbulence diagnostics for NSTX divertor turbulence characterization

- Upstream: Gas Puff Imaging (GPI) [Zweben NF 2004]
 - $D\alpha$ emission, 400kHz, 2 µs exposure, 1 cm resolution
- Wide angle divertor imaging:
 - Li I emission, 100kHz, 9 µs exposure, 0.8 cm resolution
 - Toroidal remap for easier analysis [Scotti RSI 2012]
- Langmuir probe array [Kallman/Jaworski RSI 2010]:
 - Triple probes, 250 kHz

Lower Div Cam. Bay E

In diverted L-modes discharges, divertor broadband fluctuations in Li I emission observed with δI/I up to 30-50%

- Divertor intermittent filaments studied via neutral lithium imaging of filament footprint
 - Brightest line in NSTX, atomic physics provides surface localization (First in [Maqueda, NF 2010])

40

- Brightness fluctuations can be understood as being ~ ñ_e
- Broadband fluctuations in Li I, δI/I up to 30-50% in region connected to midplane
 - Suggest target fluctuations related to upstream fluctuations
 - Statistical moments follow Gamma distribution function

SIX-U

Zero-delay cross correlation shows helical correlation regions at the divertor target

- Helical correlation regions from cross correlation of pixel with rest of image
- Width of cross-correlation region decreases radially towards strike point
- Helical regions of negative correlation nearby positive correlation regions
 - As in GPI 2D cross corr. (Zweben Poster B29)
- Time delay cross correlation shows outward radial propagation along helical footprint
 - Consistent with upstream radial propagation

Filament footprint in Li I emission correlates with probe ion saturation current at target

- Neutral lithium emission and ion saturation current (I_{sat}) from target Langmuir probes at same (r,ϕ) show:
 - Cross correlation up to 0.7, peaked at zero delay, comparable PDF
- Fluctuation level ~30% for Li I emission, ~100% for I_{sat} at same location
 - Smaller probe radial resolution $(\sim 2x) \rightarrow$ smaller scales
 - Li I photon emission coefficient decreases with density

J. Kallman, M. Jaworski, V. Surla

GPI correlates with divertor emission over region connected to divertor target

F. Scotti, Near and far SOL divertor turbulence in NSTX/NSTX-U

• 9 🖳

Correlation above random observed over divertor area mapping to GPI field of view

F. Scotti, Near and far SOL divertor turbulence in NSTX/NSTX-U

🗕 10 🖳

Divertor fluctuations due to upstream and divertor-localized turbulence in NSTX/NSTX-U

- Divertor fluctuations due to upstream turbulence
 - Filaments in light emission on divertor target
 - Correlation with Langmuir probes and upstream GPI
 - Extent of region with connected turbulence
- First observation of divertorlocalized turbulence in NSTX-U
 - Intermittent filaments in light emission along divertor legs
 - Shape and absence of upstream correlation suggest generation in divertor legs
 - Possible additional mechanism to reduce peak heat flux

Divertor-localized fluctuations could cause further spreading of target heat flux

- Divertor-leg fluctuations theoretically studied in several papers:
 - R. Cohen, CPP 1996, 2006, NF 2007.
 - D. Ryutov, CPP 2004, 2007, PoP 2007.
- Observations in MAST and C-Mod:
 - Harrison, PoP 2015, Terry, JNME 2017.
- Circular flux tube at divertor leg
 - Representative of flute-like instability
 - Magnetic shear results in ribbon structures upstream
- Flux tube elongation possible driver for upstream disconnection of divertor turbulence

D.Farina, Ŕ.Pozzoli, D.Ryutov, NF 1993

Throughput-optimized camera and high X-point L-modes enabled near-separatrix filaments imaging in NSTX-U

- New NSTX-U fast camera to study divertor fluctuations:
 - Divertor-localized instabilities, divertor filaments due to upstream blobs
- Divertor turbulence imaging through different charge states provides contrast at different spatial locations
 - Filament footprint on target via Li I
 - Filaments on divertor legs via C III (~10x dimmer than D-α)
- Throughput-optimized setup enabled 100kHz imaging via C III

Flute-like intermittent field-aligned filaments observed in inner and outer divertor legs

F. Scotti, Near and far SOL divertor turbulence in NSTX/NSTX-U

— 14 🖳

No correlation observed between inner and outer leg filaments, apparent motion towards X-point

- Zero-delay cross corr. of pixel with rest of image over 10ms
- Correlation > (<) toroidal turn on inner (outer) leg
 - Parallel correlation length ~ 3 m (due to limited C III shell?)
- No correlation between inner and outer leg filaments
- Filaments are field aligned, radially localized around leg
- Apparent poloidal motion for both inner and outer leg filaments towards X-point (also in C-Mod)
 - Or equivalently opposite toroidal directions.
- No correlation with upstream GPI

Summary

- Divertor target fluctuations in NSTX L-modes discharges due to upstream turbulence
 - Li I intermittent filaments represent footprint of upstream blobs
 - Fluctuations correlate with target Langmuir probes and GPI
 - Reduction in fluctuations and upstream correlation approaching separatrix
 - Extent of connected region in different conditions in different operational regimes to be investigated (connect to H-mode work [Maqueda NF 2010])
- Near-separatrix divertor turbulence in NSTX-U L-mode discharges
 - Intermittent filaments in C III emission
 - Filaments on divertor legs with no correlation with upstream blobs
 - Apparent filament motion is towards X-point on both legs
 - Shape, dynamics and absence of upstream correlation suggest fluctuations are generated on divertor legs

16 🕓