

Parametric investigation of CAE/GAE instability and effect on thermal confinement in NSTX-U

Shawn Tang, UCLA N.A. Crocker, T.A. Carter, UCLA E.D. Fredrickson, N. N. Gorelenkov, W. Guttenfelder, PPPL

> Transport Task Force 2017 Williamsburg, VA April 25-28

National Spherical Torus Experiment

- Low aspect ratio: R/a ~ 1.3
- High beta: β up to 40%
- Low toroidal field $B_T \le 0.5T$
- High plasma current I_P ≤ 1.3MA
- Electron temperature ~ 1keV
- Density ~ 10¹⁹ m⁻³
- Injection of up to 7MW of E ≤ 100keV neutral D beam
- Preferential electron heating (2:1)
- Low collisionality

Overview

- High frequency compressional (CAE) and global (GAE) Alfvén eigenmodes are leading candidates to explain core anomalous electron heat transport with increasing toroidal field and beam power
- No fully validated model for predicting the spectra, structure, and amplitude of these eigenmodes
 - Motivates analysis across wide range of plasma parameters to establish scaling laws and threshold studies
- Database of shots used to investigate role of modes in anomalous electron transport, as well as understanding physics controlling the instability

Anomalous electron transport correlated with high frequency Alfvén activity

- Beam-heated spherical torus plasmas feature high frequency Alfvén eigenmodes (AE) (f > ~ 400 kHz): Compressional (CAE) & Global (GAE)
- CAEs & GAEs correlate with enhanced core χ_e in NSTX
- Proposed mechanisms
 - Resonance w/ multiple modes stochastizes e⁻ orbits \rightarrow enhance χ_e
 - Modes channel beam energy to edge via coupling to kinetic Alfvén waves

[D. Stutman et al., PRL 102 115002 (2009)]

CAEs and GAEs driven by Doppler-shifted cyclotron resonance with beam heating ions

 CAEs (compressional) and GAEs (global) are Alfvén eigenmodes, where approximately

 $\omega^2 = k^2 V_A^2 \text{ (CAE)}$ $\omega^2 = k_{||}^2 V_A^2 \text{ (GAE)}$

- For cyclotron resonance the parallel resonance condition is: $\omega k_{||}v_{B||} = \omega_{CB}$
- The perpendicular instability condition requires finite orbit widths, e.g.:
 - -CAEs: $1 < k_{\perp} \rho_{\perp b} < 2$
 - -GAES: $2 < k_{\perp} \rho_{\perp b} < 4$
 - $-k_{\perp}\rho_{\perp b}$ is stabilizing in some ranges and destabilizing in others \rightarrow anisotropy important to instability

[N.N. Gorelenkov et. al., N.F. 43 (2003) 228-223]

Database extended with spectral characteristics of CAEs and GAEs

- Existing database with plasma parameters from TRANSP extended to include characteristics of CAEs and GAEs
 - Database spans 195 total shots and 1051 total times
 - Majority of shots in H-mode
 - Plasma currents ranging 0.3-1.3MA, average 0.9MA
 - Plasma heated up to 6MW with maximum beam voltage 90kV
 - On-axis magnetic field from 2.7-5.3kG
 - Central electron densities from 0.9x10¹⁹ to 1.3x10²⁰ m-3
 - Central electron temperature typically 0.8keV, ranging from 0.23 to 1.7keV

Database extended with spectral characteristics of CAEs and GAEs

- Constructed from shots from 2010 experimental campaign on NSTX
 - Each TRANSP run divided into 50ms intervals
 - TRANSP infers transport coefficients and fast ion population from profile measurements and a model of beam deposition
 - − TRANSP outputs calculated using neoclassical fast ion diffusion → neutron rate discrepancy a measure of fast ion transport
- Frequency, mode power, and toroidal mode number calculated for each 50ms interval
 - Divide into 1ms records and FFT
 - Keep points (t,f) that are a good fit to single toroidal mode number $(\chi^2 < 0.5)$
 - Power weight ($|\delta B|^2$) average f, n

Mode activity characterized using edge B-dot array

 δb measured by a toroidally distributed array of poloidal magnetic field sensing coils (Mirnov coils)

-10 coils

 Statistical analysis yields frequency, mode number, and amplitude

Modes identified by testing quality of fit to single toroidal mode number

$$\chi^{2} \equiv 1 - \left| \sum_{\forall \phi} \delta b e^{-in\phi} \right|^{2} / \left(N_{\phi} \sum_{\forall \phi} |\delta b|^{2} \right)$$

- Low chi-square $\rightarrow \partial b(t, f)$ dominated by single toroidal mode

• Coils are distributed toroidally with smallest coil spacing of $\varphi = 10^{\circ} \rightarrow \text{can resolve } |n| \le 18 (N_{\varphi} = 10)$

Mode power increases with beam power as expected

- Correlation found between total mode power ($|\delta b|^2$) and TRANSP calculated absorbed beam power: $|\delta b| \sim P_{abs}^{2.5}$
- Roughly consistent with nonlinear simulations and analytic theory which have shown: $\delta b \sim P_b^2$ [Belova & Lestz, 2016]

High correlation of n, f suggests importance of parallel resonance condition

- Perform mode power (δB^2) weighted fit
- ω increases as |n| decreases
 - If k ~ n/R, expect ω to decrease as |n| decreases from dispersion relationship
 - However, slope consistent with parallel resonance condition if $k_{\parallel} \sim n/R$: $\omega_{ci} = \omega k_{\parallel}v_{b\parallel}$
- Normalization of ω and n motivated by parallel resonance condition significantly improves correlation
 - Correlation coefficient improves from $\rho = 0.52 + -0.05$ to $\rho = 0.80 + -0.05$
- Plasmas with hollow density profiles have different relationship

Correlation improves with normalization motivated by parallel resonance condition

- Instability thought to be governed by Doppler shifted cyclotron parallel resonance condition
 - $-\omega_{ci} = \omega k_{||}v_{b||}$
 - $-\omega
 ightarrow \omega/\omega_{ci}$
 - $-k_{tor} \rightarrow k_{tor}/(\omega_{ci}/\max(v_{b||,inj})), k_{tor} = n/R$
- $k_{||}$ and destablizing $v_{b||}$ not known \rightarrow k_{tor} and max($v_{b||,inj})$ used
- Correlation coefficient improves from ρ = 0.52+/- 0.05 to ρ = 0.80 +/- 0.05 after normalization
- Suggests that resonance condition plays some role in governing instability

$|\delta b|^2$ correlates with T_e at high beam power

- Total mode power found to correlate with temperature at high beam power
- Further investigation required
 - Cause of correlation unknown

- $T_{\rm e}$ may be important for its role in Landau damping and anisotropy of beam ion distribution

Electron energy density profile flattens with increased mode power

- U_e flattening factor approximated by volume averaged electron energy density (U_e) over peak U_e : $\frac{\langle U_e \rangle}{U_e(0)}$
- Correlation consistent with theory of anomalous electron transport by CAE/GAEs
 - TRANSP calculations assumed no anomalous fast ion diffusion
- Further analysis needed to explore implications of this result

T_{e0} correlates with both <f_{norm}>, <n_{norm}>

- T_{e0} correlates with both <f_{norm}> and <n_{norm}> with statistical significance, with $\rho = 0.32\pm0.05$ and $\rho = 0.45\pm0.05$ respectively
- $< f_{norm} > < n_{norm} > control T_{e0}$?

Electron energy confinement time in core correlates with <f_{norm}>,<n_{norm}>

- $\chi_{\rm e}$ ideal indicator of anomalous transport but very noisy
 - Connects well to Stutman PRL 2009
 - Grad Te goes to zero in areas of interest
- Electron energy confinement time $\tau_{e}(\rho)$ is lower noise

- Modeled as a function of radius, and is an integrated measure of confinement
- Median smoothing over time to eliminate outliers
- take minimum value in deep core between $\rho = 0.1$ and $\rho = 0.5$

$min(\tau_e)$ in core correlates with $< f_{norm} > , < n_{norm} >$

- Correlation of <f_norm>, <n_norm> with τ_e gives ρ = 0.296 ± 0.05, 0.302 ± 0.05 respectively
- Modeling assume classical fast ion diffusivity $\rightarrow \tau_e$ controlled by anomalous fast ion transport?
- Some f, n more effective at orbit stochastization?

Conclusions

- Beam power correlates with mode power
- Toroidal mode number correlates highly with frequency
 - Correlation improves with normalization motivated by parallel resonance condition
- dB scales with Te at high beam power
- Electron energy density profile flattens with increased mode power
- Central temperature correlates with frequency and mode number
- Electron confinement time correlates with frequency and mode number

Future Work

- Implementing step-wise multiple linear regression to better understanding of parameters controlling transport
- Extending research to DIII-D through experiment scheduled in July
 - Complementary control of injection angle allowing for exploration of parallel resonance condition and perpendicular instability condition