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NSTX-U improves controllability and brings about new
control requirements

 New opportunities to use feedback control to optimize

performance as a result of:

— Longer pulse length, increased toroidal field, increased heating and

current drive

« Advanced control will be necessary for achieving many

operational goals, e.g.,

— Non-inductive scenarios, snowflake divertor, rotation control,

current profile control

» 2x higher CD efficiency from
larger tangency radius Ry,

> 100% non-inductive CD with

* NBI tangency radius
* Plasma density, position
Present NBI New 2'“"I NBI

core q(r) profile controllable by:

ab) .

B,=1T, P,z=10MW, ENB-110keV

vvvvvvvvvvvvvvvvvvvv

Ryay [m]
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TS 60, 70,120,130
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Complexity of the control problems motivates the use of
model-based control design techniques

« Spatially distributed systems with nonlinearities and
coupling
— Multiple actuators and measurements
* Need to balance competing goals to achieve optimal
performance
— Need to respect constraints to avoid MHD instabilities or machine
limits
* Need to consider actuator limitations
* Noisy, possibly limited real-time measurements

* By incorporating dynamic models in the design process,
control algorithms can be made to handle all of these
issues
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The need for high-fidelity control simulations

« Control design typically relies on reduced modeling to
make the design problem easier

* When tested experimentally, the nonlinearities and
coupling of the actual system may degrade performance
— Dedicated experimental time needed for commissioning

Design

: - Simplified model
First-principles
Actual system P P (empirical/analytical
model i
scalings)

= =

» Testing controllers using the integrated modeling code
TRANSP prior to implementation may:

— Improve controller performance and reduce time for
commissioning and fine tuning

— Enable demonstration of new control techniques to justify
implementation and experimental time

Model for control
design

Control design

Testing
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TRANSP has been used previously for
NSTX-U predictive simulations (open loop)

« The computational approach used in this work is based on
NSTX-U steady-state scenario development
— S. Gerhardt (Nuclear Fusion 2012)
— T, profile predicted from Chang-Hinton model
— MHD equilibrium calculated using free boundary code ISOLVER

— Beam heating and current drive profiles calculated using NUBEAM
with beam shielding calculated by Lin-Liu and Hinton model

— Sauter model used for bootstrap current
— T,, n, profile shapes and scale factors prescribed prior to
simulation runs

» Scale factors scanned during several runs to achieve desired H98 and
Greenwald fraction

— Z « prescribed, used to calculate n, assuming carbon as the only
impurity
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Modifications to the previous approach are necessary to
perform control simulations

1. Ability to change actuators in ‘real-time’, i.e., based on
feedback control

2. Electron temperature and density no longer a priori inputs
— Interested in transient behavior unlike previous scans of steady state

— Temperature should change based on confinement as beam powers
are modified

3. An analog to the plasma control system (PCS) is needed

— To perform control calculations, allow targets and gain waveforms to be
loaded, etc.

— To mimic the beam modulation algorithms used to modify heating
power in the actual experiment
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Modifications have been implemented using external code:
the Expert file

« Expert subroutine called at many places throughout
TRANSP production code

« An identifier is passed along with the call

— different snippets of code can be run at different points during the
simulation

« Custom run-specific code can be run at each call to
manipulate certain variables (which would typically be input
ahead of time) based on the state of the simulation

Subroutine expert (ID)

<TRANSP source code>

|lcall expert (ID) if ID ==
<custom calculations>
<more TRANSP code> endif
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1. Ability to change actuators in real-time’, i.e., based on
feedback control

* Focus has been on actuators used for current/rotation profile
control so far, but others will be added in the future

 Hooks added to TRANSP code and appropriate code added
to expert file to overwrite U-file data for:
— Beam powers,
— Density,
— Total plasma current,
— NTV torque (I. Goumiri, Princeton U.),
— Plasma boundary shape request
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2. Temperature is set based on stored energy predicted by
confinement scaling expressions

« At each TRANSP step (from time t, to t,), stored energy
predicted by

Wih.a
Winp = Wina + (& — to) <— tha Pnet) :

TE
— Confinement based on scaling (either ITER98 or ST scaling)
— P, and scaling law parameters from TRANSP internal variables

» Electron temperature assumed to be of the form

R R 2500 - S NN B
T.(p,t) = Teo(t)TI (p) le . pes2 — %
— Scale factor calculated as 2°°°?___ ’
— 1500 ] -
2(Ey) — (nT;) e
Tep = <n ref> F 1000
500—:
%% 3 f =11 _=1.
(Bu) = <7 = 5 [TeoneTI) + (0T 5
0.8

0

0.2

0.4

Normalized p

0.6
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2. Line-averaged electron density or Greenwald fraction
requests can be tracked

* Density assumed to be of the form
ne(p,t) = ne,O(t)ngef(ﬁ)
* A simple model is used to evolve the electron inventory N at

each TRANSP transport time step (from time t, to t,)
Ny =Ny + (tpy — to) (N — N,) /TN

« Nred prescribed by controller or calculated from requested
line-averaged density or Greenwald fraction f:

Controller output y_. = inventory: y. = line-averaged density: V.= fow:

Nref cI ref
qu:yc Nreq:yc Nred = Yen N

nres 10ma? pref

* Profile scale factor calculated from the predicted inventory as
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2. The added capabilities can be used to constrain
simulations to match a desired time-varying f;,, and Hgyg

1

0.8 1

=
O

0.2

0

0.6 1

0.4 1

fow reduced

User request
TRANSP value

HI8Y2

05 1 15
Time (s)

1.51

0.51

2 -

\ H98

reduced

05 1 15
Time (s)

3
Eth (J/m®)

05 1 15 2
Time (s)

« Greenwald fraction request decreased at 0.75s
« TRANSP modifies the density (on an appropriate time scale for
density changes) to achieve the request

« H98 request ramped down until 1.0s, step at 1.0s

» Stored energy prediction responds to fg,y, and hgg
« drops slowly as Hygg ramps down (0.0-0.75s), and faster as the

density is decreased

« Step change in Hyg causes a large drop in stored energy
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3. A general controller structure has been implemented within

the Expert file

Yr (t) ]

User input in red

Actuator limits

Feedback Nonlinear
’U(t) Usat (t)
Matrices u(t) . f t. -
Umod (1) ransformation selection
N usat<t) Inverse
Anti-windup uaw (1)
Ymod (t)
Matrices

+y(t) Diagnostics

NSTX-U

+

Physical actuator requests
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3. Beam power modulation algorithms planned for NSTX-U
have been implemented in TRANSP simulations

» Enables assessment of modulation’s effect on performance

— Beams modulated to achieve requested average power, respecting
minimum on/off times and maximum modulations per shot.

— Results can help determine optimal modulation parameters (minimum
on/off times) and control gains to achieve desired levels of performance

x106

| 1,=0.6MA, B=0.75T,
] foy=0.75

1] 1,=0.6MA, B=1T, fqy=06 | E_ 5 .IIIII I
Target £
0 e al 0 — Smoothed

t [s] 2 4 t[SS] 8 10
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Several on-going projects using
TRANSP feedback control framework

« Stored energy, q,/li control on NSTX-U
— M. D. Boyer, PPPL

* Rotation profile control on NSTX-U
— |. Goumiri, Princeton U.

» Current profile control on NSTX-U
— Z. llhan, Lehigh U.

* Rotation profile control on DIII-D
— W. Wehner, Lehigh U.

« Shape control on NSTX-U
— M. D. Boyer, PPPL
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TRANSP testing of simultaneous q, and 3, control via beam
power and outer gap size

Reference plasma boundaries:

* Boundary can have Strong Small outer gap Large outer gap
effect on q profile through =T I . S T /= R
— Effect on beam deposition 15 .
profile g

— Effect on bootstrap current
through change in ]
elongation E o]

 Two reference boundaries
with different outer gap sizes _
were chosen, and interpolated -5
between based on the 22
feedback controller request o 05 1 15 2

R [m]

M.D. Boyer, NF 2015
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State-space system identification for
simultaneous q, and 3, control

* Open loop signals applied to each actuator

* Prediction-error method used to determine optimal model
parameters for a particular model order using first part of
data set (estimation set)

« Remainder of data (validation set) used to determine best

model order (number of states)

0.2

Time (s)

10

6 7 8 9 10
Time (s)
4 .......................................
3.5
] Model
37 TRANSP
2.5 e
6 7 8 9 10
Time (s)
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LQG servo controller designed for identified system

« Solves the optimal control problem of minimizing the cost

function ]
J=F {711_{1010/ ({jT, U?b} Qzu + :CZTQZ:UZ) dt} :
0

53:A§3+Bufb+w,

y = Cz+ Duyy, + v,
where Q.. is a weight matrix for the states and inputs,
and @: weights the integral of the output tracking error z;

e Since the states of the identified model are not measured,
they are estimated by a Kalman filter

— Tuned based on expected process and measurement noise (w,v)

* Integral action ensures steady-state error is driven to zero
In the presence of disturbances or target tracking

Urp

for the system
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Optimal controller achieves good target tracking performance
in TRANSP simulation testing

2.2 L : : 3.1+ 1 ! \ 1
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« Quter gap saturated at 4s, but performance is still good

« Small change in non-inductive fraction, line-average density
iIncreased due to decrease in volume at fixed particle inventory
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Profiles and coil currents during optimal controller simulation
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Rotation profile control in NSTX [Il. Goumiri]

* For design, a simplified form of toroidal momentum equation
Is assumed, with model profiles derived from TRANSP

G, v\~ o oV d
mei<32>8—j= (8—p) 8_,0 ZnimiX¢<R2(VP)2>—w +Tnpr + 1INtV

(9—pz op
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Rotation profile control in NSTX [Il. Goumiri]

* For design, a simplified form of toroidal momentum equation
IS assumed, with model profiles derived from TRANSP
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Simplified models assumed for
NBI and NTV torque [l. Goumiri]

NBI Torque

Tnpi(t,p) = Tnpr(t)Fngi(p)

dT T
NBL = knprPnp1(t)
dt TNBI

0 02 0.4 0.6 038 1

Actuators:

NTV Torque

Tnrv(t, p) = —KG(p)(R*)I* (t)w(t, p)

0.8r

0.6r

0.41

0.2r

P NBI Total neutral beam power

1 3D coil current
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Simplified model predictions compare
very well to TRANSP simulations [l. Goumiri]
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TRANSP simulation of rotation profile controller [I. Goumiri]
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Future plans for feedback control simulations in TRANSP

 Extend framework to other machines

« Extend to include additional actuators and control loops

— Coil voltages for shape control in TRANSP (mostly finished)
* For testing control laws
» Or for ensuring that predictive simulations mimic experiments

— RF for heating, current profile control, NTM control, etc.
« Will need hooks for modifying RF input parameters in “real-time’
» Use transport models for T, density
— Add puffing/pellets/pumping as feedback actuators

— May want a simplified transport model to speed of simulations
* Neural networks? O. Meneghini

NSTX-U Use of TRANSP for feedback control algorithm development, Dan Boyer, 3/24/2015
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Suggested upgrades

1. Add confinement and Greenwald fraction constraints to
production code

— These have been useful for several users already

2. Enable external programs to steer’ TRANSP through a
socket connection:

Plasma state,

a Synthetic diagnostics )
MATLAB, IDL, TRANSP
Python, etc.

Actuator commands, /

Changes to run settings

' NSTX-U
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Socket connection with MATLAB would improve control
development workflow

« MATLAB has numerous control design toolboxes as well as
a graphical design and simulation tool SIMULINK

SIMULINK \4— Simplified
Control algorithm Sr:\glojlle-l":;(
klmplementatlon j_, B

& /
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Socket connection with MATLAB would improve control
development workflow

« MATLAB has numerous control design toolboxes as well as
a graphical design and simulation tool SIMULINK

A R
conmUHINE. Socket
_ontro agorl.t m connection TRANSP
Implementation

N J J
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Socket connection with MATLAB would improve control
development workflow

« MATLAB has numerous control design toolboxes as well as
a graphical design and simulation tool SIMULINK

A ™
I Socket
_ontro agorl.t m ST e TRANSP
Implementation
N / J
4 )
Real-time Plasma
code generator Control
System )
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Socket connection with MATLAB would improve control
development workflow

« MATLAB has numerous control design toolboxes as well as
a graphical design and simulation tool SIMULINK

-

Plasma
Control
System

J
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Socket connection with MATLAB would improve control
development workflow

« MATLAB has numerous control design toolboxes as well as
a graphical design and simulation tool SIMULINK

-

Plasma
Control
System

J

; TRANSPJ
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Socket connection with MATLAB would improve control
development workflow

« MATLAB has numerous control design toolboxes as well as
a graphical design and simulation tool SIMULINK

Plasma
Control
System
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Socket connection with MATLAB would improve control
development workflow

« MATLAB has numerous control design toolboxes as well as
a graphical design and simulation tool SIMULINK

SIMULINK
Control algorithm
implementation

N
(
Real-time
code generator

A R
Socket
connection TRANSP
) J
~

Plasma
Control
System

J

s
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