

Supported by

Use of TRANSP for feedback control algorithm development

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Dan Boyer¹

R. Andre¹, D. A. Gates¹, S. Gerhardt¹, I. Goumiri², C. *Rowley*², S. A. Sabbagh³, Z. Ilhan⁴, *W.* Wehner⁴, E. Schuster⁴

¹PPPL, ²Princeton U., ³Columbia U., ⁴Lehigh U.

2015 TRANSP User's Group Meeting 3/24/2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI **Chonbuk Natl U** NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

NSTX-U improves controllability and brings about new control requirements

- New opportunities to use feedback control to optimize performance as a result of:
 - Longer pulse length, increased toroidal field, increased heating and current drive
- Advanced control will be necessary for achieving many operational goals, e.g.,
 - Non-inductive scenarios, snowflake divertor, rotation control, current profile control

- 2x higher CD efficiency from larger tangency radius R_{TAN}
- 100% non-inductive CD with core q(r) profile controllable by:
 - NBI tangency radius
 - Plasma density, position

Complexity of the control problems motivates the use of model-based control design techniques

- Spatially distributed systems with nonlinearities and coupling
 - Multiple actuators and measurements
- Need to balance competing goals to achieve optimal performance
 - Need to respect **constraints** to avoid MHD instabilities or machine limits
- Need to consider **actuator limitations**
- Noisy, possibly limited real-time measurements
- By incorporating dynamic models in the design process, control algorithms can be made to handle all of these issues

The need for high-fidelity control simulations

- Control design typically relies on reduced modeling to make the design problem easier
- When tested experimentally, the nonlinearities and coupling of the actual system may degrade performance
 - Dedicated experimental time needed for commissioning

- Testing controllers using the integrated modeling code TRANSP prior to implementation may:
 - Improve controller performance and reduce time for commissioning and fine tuning
 - Enable demonstration of **new control techniques** to justify implementation and experimental time

TRANSP has been used previously for NSTX-U predictive simulations (open loop)

- The computational approach used in this work is based on NSTX-U steady-state scenario development
 - S. Gerhardt (*Nuclear Fusion* 2012)
 - T_i profile predicted from Chang-Hinton model
 - MHD equilibrium calculated using free boundary code ISOLVER
 - Beam heating and current drive profiles calculated using NUBEAM with beam shielding calculated by Lin-Liu and Hinton model
 - Sauter model used for bootstrap current
 - T_e, n_e profile shapes and scale factors prescribed prior to simulation runs
 - Scale factors scanned during several runs to achieve desired H98 and Greenwald fraction
 - Z_{eff} prescribed, used to calculate n_i assuming carbon as the only impurity

Modifications to the previous approach are necessary to perform control simulations

- 1. Ability to change actuators in `real-time', i.e., based on feedback control
- 2. Electron temperature and density no longer *a priori* inputs
 - Interested in transient behavior unlike previous scans of steady state
 - Temperature should change based on confinement as beam powers are modified
- 3. An analog to the plasma control system (PCS) is needed
 - To perform control calculations, allow targets and gain waveforms to be loaded, etc.
 - To mimic the beam modulation algorithms used to modify heating power in the actual experiment

Modifications have been implemented using external code: the Expert file

- Expert subroutine called at many places throughout TRANSP production code
- An identifier is passed along with the call
 - different snippets of code can be run at different points during the simulation
- Custom run-specific code can be run at each call to manipulate certain variables (which would typically be input ahead of time) based on the state of the simulation

1. Ability to change actuators in `real-time', i.e., based on feedback control

- Focus has been on actuators used for current/rotation profile control so far, but others will be added in the future
- Hooks added to TRANSP code and appropriate code added to expert file to overwrite U-file data for:
 - Beam powers,
 - Density,
 - Total plasma current,
 - NTV torque (I. Goumiri, Princeton U.),
 - Plasma boundary shape request

2. Temperature is set based on stored energy predicted by confinement scaling expressions

 At each TRANSP step (from time t_a to t_b), stored energy predicted by

$$W_{th,b} = W_{th,a} + (t_b - t_a) \left(-\frac{W_{th,a}}{\tau_E} + P_{net} \right),$$

- Confinement based on scaling (either ITER98 or ST scaling)
- P_{net} and scaling law parameters from TRANSP internal variables
- Electron temperature assumed to be of the form

$$T_e(\hat{\rho}, t) = T_{e,0}(t) T_e^{ref}(\hat{\rho})$$

Scale factor calculated as

$$T_{e,0} = \frac{\frac{2}{3} \langle E_{th} \rangle - \langle n_i T_i \rangle}{\langle n_e T_e^{ref} \rangle}$$

$$\langle E_{th} \rangle = \frac{W_{th}}{V} = \frac{3}{2} \left[T_{e,0} \langle n_e T_e^{ref} \rangle + \langle n_i T_i \rangle \right]$$

2. Line-averaged electron density or Greenwald fraction requests can be tracked

• Density assumed to be of the form

 $n_e(\hat{\rho}, t) = n_{e,0}(t) n_e^{ref}(\hat{\rho})$

 A simple model is used to evolve the electron inventory N at each TRANSP transport time step (from time t_a to t_b)

 $N_b = N_a + (t_b - t_a)(N^{req} - N_a)/\tau_N$

 N^{req} prescribed by controller or calculated from requested line-averaged density or Greenwald fraction f_{GW}:

Controller output y_c = inventory: y_c = line-averaged density: $y_c = f_{GW}$: $N^{req} = y_c$ $N^{req} = y_c \frac{N^{ref}}{\bar{n}_e^{ref}}$ $N^{req} = \frac{y_c I_p}{10\pi a^2} \frac{N^{ref}}{\bar{n}_e^{ref}}$

• Profile scale factor calculated from the predicted inventory as

$$n_{e,0} = \frac{N}{\int_0^1 n_e^{ref} \frac{\partial V}{\partial \hat{\rho}} d\hat{\rho}}$$

2. The added capabilities can be used to constrain simulations to match a desired time-varying f_{GW} and H₉₈

- Greenwald fraction request decreased at 0.75s
 - TRANSP modifies the density (on an appropriate time scale for density changes) to achieve the request
- H98 request ramped down until 1.0s, step at 1.0s
- Stored energy prediction responds to f_{GW} and h₉₈
 - drops slowly as H_{98} ramps down (0.0-0.75s), and faster as the density is decreased
 - Step change in H₉₈ causes a large drop in stored energy

3. A general controller structure has been implemented within the Expert file

3. Beam power modulation algorithms planned for NSTX-U have been implemented in TRANSP simulations

- Enables assessment of modulation's effect on performance
 - Beams modulated to achieve requested average power, respecting minimum on/off times and maximum modulations per shot.
 - Results can help determine optimal modulation parameters (minimum on/off times) and control gains to achieve desired levels of performance

Several on-going projects using TRANSP feedback control framework

- Stored energy, q₀/li control on NSTX-U
 - M. D. Boyer, PPPL
- Rotation profile control on NSTX-U
 - I. Goumiri, Princeton U.
- Current profile control on NSTX-U
 - Z. Ilhan, Lehigh U.
- Rotation profile control on DIII-D
 - W. Wehner, Lehigh U.
- Shape control on NSTX-U
 - M. D. Boyer, PPPL

TRANSP testing of simultaneous q_0 and β_N control via beam power and outer gap size

- Boundary can have strong effect on q profile through
 - Effect on beam deposition profile
 - Effect on **bootstrap current** through change in elongation
- Two reference boundaries

 with different outer gap sizes
 were chosen, and interpolated
 between based on the
 feedback controller request

Reference plasma boundaries:

M.D. Boyer, NF 2015

State-space system identification for simultaneous q_0 and β_N control

- Open loop signals applied to each actuator
- Prediction-error method used to determine optimal model parameters for a particular model order using first part of data set (estimation set)
- Remainder of data (validation set) used to determine best model order (number of states)

LQG servo controller designed for identified system

• Solves the optimal control problem of minimizing the cost function $J = E \left\{ \lim_{\tau \to \infty} \int_0^\tau \left(\begin{bmatrix} \tilde{x}^T, u_{fb}^T \end{bmatrix} Q_{xu} \begin{bmatrix} \tilde{x} \\ u_{fb} \end{bmatrix} + x_i^T Q_i x_i \right) dt \right\},$

for the system

$$\dot{\tilde{x}} = A\tilde{x} + Bu_{fb} + w,$$

$$\tilde{y} = C\tilde{x} + Du_{fb} + v,$$

where Q_{xu} is a weight matrix for the states and inputs,

and Q_i weights the integral of the output tracking error x_i

• Since the states of the identified model are not measured, they are estimated by a Kalman filter

- Tuned based on expected process and measurement noise (w, v)

• Integral action ensures steady-state error is driven to zero in the presence of disturbances or target tracking

Optimal controller achieves good target tracking performance in TRANSP simulation testing

Outer gap saturated at 4s, but performance is still good

• Small change in non-inductive fraction, line-average density increased due to decrease in volume at fixed particle inventory

Profiles and coil currents during optimal controller simulation

WNSTX-U

Use of TRANSP for feedback control algorithm development, Dan Boyer, 3/24/2015

19

Rotation profile control in NSTX [I. Goumiri]

• For design, a simplified form of toroidal momentum equation is assumed, with model profiles derived from TRANSP

$$\sum_{i} n_{i} m_{i} \langle R^{2} \rangle \frac{\partial \omega}{\partial t} = \left(\frac{\partial V}{\partial \rho}\right)^{-1} \frac{\partial}{\partial \rho} \left[\frac{\partial V}{\partial \rho} \sum_{i} n_{i} m_{i} \chi_{\phi} \langle R^{2} (\nabla \rho)^{2} \rangle \frac{\partial \omega}{\partial \rho}\right] + T_{NBI} + T_{NTV}$$

Rotation profile control in NSTX [I. Goumiri]

• For design, a simplified form of toroidal momentum equation is assumed, with model profiles derived from TRANSP

Use of TRANSP for feedback control algorithm development, Dan Boyer, 3/24/2015

Simplified models assumed for NBI and NTV torque [I. Goumiri]

Simplified model predictions compare very well to TRANSP simulations [I. Goumiri]

TRANSP simulation of rotation profile controller [I. Goumiri]

Future plans for feedback control simulations in TRANSP

- Extend framework to other machines
- Extend to include additional actuators and control loops
 - Coil voltages for shape control in TRANSP (mostly finished)
 - For testing control laws
 - Or for ensuring that predictive simulations mimic experiments
 - RF for heating, current profile control, NTM control, etc.
 - Will need hooks for modifying RF input parameters in `real-time'
- Use transport models for T_e, density
 - Add puffing/pellets/pumping as feedback actuators
 - May want a simplified transport model to speed of simulations
 - Neural networks? O. Meneghini

- 1. Add confinement and Greenwald fraction constraints to production code
 - These have been useful for several users already
- 2. Enable external programs to `steer' TRANSP through a socket connection:

