TRANSP Usage at DIII-D and TRANSP For Predictive Capability / Model Validation

by

B.A. Grierson PPPL

Thanks to CPPG!

Presented at the TRANSP Users Meeting

Princeton Plasma Physics Laboratory Princeton, NJ

March 24, 2015

Overview

- TRANSP Usage at DIII-D
 - Interpretative
- Expanding TRANSP usage
 - Predictive core transport and equilibrium

2

Overview

- TRANSP Usage at DIII-D
 - Interpretative
- Expanding TRANSP usage
 - Predictive core transport and equilibrium

2

TRANSP Users at DIII-D*

- Early TRANSP implementation by Chuck Greenfield: AUTOTRANSP
 - UFILE preparation for 1D histories, 2D profiles from user or automatic profile fits, MDSPlus EFITs, default namelist
 - profiles_dir/IDL>autotransp → GUI Driven TRANSP
 Submission
- Long time users:
 - Budny, Ernst, Heidbrink, Murakami, Park, Petty, Solomon, van Zeeland
- Recent Additions:
 - Grierson, Pace, Lanctot, Hanson, Tobias, Meneghini, Bardoczi, Chrystal, Logan, Haskey, Holland recent users
- Many off-site users

Diverse Set of Workflow use TRANSP as Critical Component for Plasma Physics: TRANSP is a "Production Code"

- EP Physics use TRANSP for kEFIT, neutrons, fast-ion distribution FIDAsim
 - Synthetic diagnostics
- Stability physics uses TRANSP for fast-ion distribution in kinetic calculations
 - Sources for first-principles models
- Rotation physics uses TRANSP for torque balance and intrinsic rotation studies
 - Intrinsic torque, momentum transport coefficients
- Turbulence and transport uses TRANSP for power balance fluxes as input to GK simulations (HPC)
 Q, Γ, Π
 - Sources for first-principles gyrokinetic models
- Turbulence and transport use TRANSP for transport model validation and predictive equilibrium+transport modeling
 Q, Γ, Π
 - Validation of reduced transport models (TGLF, GLF23, MMM, RLW)
- Scenarios use TRANSP for both time-dependent and steady-state modeling
 - Predictive modeling of coupled transport+equilibrium evolution

 $\eta, j^{BS}, \gamma^{MSE}$

f(ξ,E,R,Z),P_b,S_n,n_b^(j)

f(ξ, E, R, Z), P_b

 $T_{ini}, \Pi(0)$

What I mean by "TRANSP"

- TRANSP at its core evaluates the time dependent transport equations on an equilibrium grid incorporating sources and sinks
- Interpretive TRANSP provides fluxes and uses experimental profiles to determine transport coefficients
- Input equilibrium and sources
- Output η, χ, D, etc... to compare to transport models
- Output for post-processing of diagnostics (MSE γ, FIDA, etc...)

- Predictive TRANSP uses fluxes and transport models to determine profiles
 - Compare experimental profiles to model-based profiles
- Equilibrium and sources from experiment *or* prescribed for study
 - Distinguishes from "model validation" or "prediction" workflow

What I mean by "TRANSP"

- TRANSP at its core evaluates the time dependent transport equations on an equilibrium grid incorporating sources and sinks
- Sources
 - NUBEAM (MPI)
 - LSC, TORAY, CURAY, GENRAY,
- Equilibrium options
 - Prescribed (EFIT)
 - Grad-Shafranov with fixed boundary (TEQ)
 - Free boundary with experimental coil currents (ISOLVER)
 - Free boundary predicting coil currents (ISOLVER)

- Transport model options
 - Use predictive transport solver PT_SOLVER
 - Neoclassical Chang-Hinton, NCLASS
 - Serial turbulent models GLF23, MMM, parallel TGLF
- MHD instabilities
 - Porcelli/Kadomtsev sawteeth
 - Ad-hoc options for NTM, ELMs

Interchangeable via simple namelist

Contrasting Interpretive vs. Predictive TRANSP

- "Interpretative transport"
 - Components of W
 - Power balance χ , D
 - Prescribed equilibrium
- "Predictive Simulation"
 - Fluid variables T_e , T_i , n_e , Ω from transport model
 - Chang-Hinton, NCLASS
 - GLF23 (serial), MMM (serial),
 TGLF (parallel)
 - Equilibrium from experiment (EFIT) or current diffusion with prescribed fluxsurfaces, TEQ, or free-boundary ISOLVER

DIII-D I-Coils regulate thermal stored energy as "burn control" actuator Hawryluk, et. al. NF (2015)

Contrasting Interpretive vs. Predictive TRANSP

- "Interpretative transport"
 - Components of W
 - Power balance χ , D
 - Prescribed equilibrium
- "Predictive Simulation"
 - Fluid variables T_e , T_i , n_e , Ω from transport model
 - Chang-Hinton, NCLASS
 - GLF23 (serial), MMM (serial), TGLF (parallel)
 - Equilibrium from experiment (EFIT) or current diffusion with prescribed fluxsurfaces, TEQ, or free-boundary **ISOLVER**

Time-Dependent Predictive Capabilities in TRANSP Enable Efficient and Streamlined Model Validation Studies

- Snapshot analysis is used for firstprinciples GK simulations (HPC)
 - Often same workflow used for reduced models
 - *but* Reduced models fast enough to be used in timedependent simulations
- Can evaluate model fidelity as actuators and equilibrium evolves
- Convenient and familiar storage of output enables entire TRANSP runs to be directly compared for arbitrary 1D and 2D quantities (T_e, T_i, n_e, q, j^{BS}, etc...)

Time-Dependent Predictive Capabilities in TRANSP Enable Efficient and Streamlined Model Validation Studies

- Snapshot analysis is used for firstprinciples GK simulations (HPC)
 - Often same workflow used for reduced models
 - *but* Reduced models fast enough to be used in timedependent simulations
- Can evaluate model fidelity as actuators and equilibrium evolves
- Convenient and familiar storage of output enables entire TRANSP runs to be directly compared for arbitrary 1D and 2D quantities (T_e, T_i, n_e, q, j^{BS}, etc...)

Do snapshot analysis here GYRO, TGYRO, MMM, PT_SOLVER

Looks "good"? Run time-dependent simulation for entire H-mode phase for available transport models

TRANSP Output Used for Reduced Model Verification Prior to Time-dependent Simulations

- GYRO, TGLF, NEO and TGYRO all run for snapshots using TRANSP equilibrium, profiles and fluxes
- Verification that TGLF is capturing first-principles model determined by a/L_X scans
 - $Q^{TGLF} \approx Q^{GYRO}$ locally
 - Quantification of expected stiffness

Nonlinear flux-tube GYRO at r/a=0.7

TGLF

B.A. Grierson / TUG2015 / Mar 2015

Simulations Are Executed using Various Models by Increasing Level of Complexity to Assess Sensitivities as Inter-dependencies are Identified

NATIONAL FUSION FACILITY

Simulations Are Executed using Various Models by Increasing Level of Complexity to Assess Sensitivities as Inter-dependencies are Identified

NATIONAL FUSION FACILITY

Simulations Are Executed using Various Models by Increasing Level of Complexity to Assess Sensitivities as Inter-dependencies are Identified

NATIONAL FUSION FACILITY

Global Quantities Evaluated With Straightforward Loop over TRANSP Run IDs: Clear TGLF is a More Accurate Transport Model for ITER Baseline w/ Electron Heating

- Thermal stored energy W_{inc} compared to experimental value has been used as a core transport model metric
- Experimental, GLF23 and TGLF TRANSP runs used to define model "validity"
- Global confinement metrics indicated TGLF is more accurate (<∆R_W>=57%,
 <∆R_W>=5%) for global stored energy
- Clear that direct electron heating (ECH) causes large discrepancy from experiment

Computing Validation Metrics of Individual Profiles (and gradients) in Spatio-Temporal Space Indicates where Model Inaccuracies are Largest

- Global metrics do not distinguish if a model is off "a little everywhere" or "a lot somewhere"
- Time dependent modeling with predictive TRANSP provides efficient postprocessing of validation metrics
- Simple visualization of profile differences and relative differences

Computing Validation Metrics of Individual Profiles (and gradients) in Spatio-Temporal Space Indicates where Model Inaccuracies are Largest

- Global metrics do not distinguish if a model is off "a little everywhere" or "a lot somewhere"
- Time dependent modeling with predictive TRANSP provides efficient postprocessing of validation metrics
- Simple visualization of profile differences and relative differences

Validation Metrics In Time and Space (t, ϱ) Expose Where the Model is Inaccurate (large σ)

- Experimental, GLF23 and TGLF TRANSP predictive simulations show that:
 - GLF23 is more inaccurate with direct electron heating
 - TGLF is equally accurate with electron **or** ion heating
 - TGLF inaccuracy is limited to near-axis
- TGLF evaluation of Q inside of q=1 is well-know to be optimistic for confinement
- Inclusion of clean sawteeth brings electrons into agreement

Validation Metrics In Time and Space (1, ϱ) Expose Where the Model is Inaccurate (large σ)

- Experimental, GLF23 and TGLF TRANSP predictive simulations show that:
 - GLF23 is more inaccurate with direct electron heating
 - TGLF is equally accurate with electron **or** ion heating
 - TGLF inaccuracy is limited to near-axis
- TGLF evaluation of Q inside of q=1 is well-know to be optimistic for confinement
- Inclusion of clean sawteeth brings electrons into agreement

Critical Requirement of Any Predictive Modeling Code/Framework/Workflow Is Validation

- Demonstration of verified module communication is required for accurate software engineering, but not physics
 - Getting codes to run, proof-of-principle examples, overplots, etc...
- Meaningful validation studies require direct comparison to experimental measurements with uncertainties, synthetic diagnostics
- Validation requires interchangeable experimental or model-based quantity (T_e , T_i , q, j, Ω) to expose gaps in models
 - How does model-based steady-state j^{BS} depend on choosing experimental or model-based n_e, T_e, Z_{eff}?

• Meaningful validation studies require:

 Error Propagation or ensemble Monte-Carlo based statistics (how does the Porcelli sawtooth trigger frequency depend on the uncertainty in my Thomson scattering system?)

• Synthetic Diagnostics

- Do the MSE pitch-angles match the q evolution from Porcelli?

Validation Metrics For Core Transport Are Reasonably Defined for Global Histories, Profiles: What are Metrics for Equilibrium?

- Pitch angles and *l_i* are well defined
- What is metric for flux consumption?
- What is shape metric for δ, κ, plasma-wall or divertor X-point distance?
- Power supply coil currents (including vessel) should be metric?

FPORCELLI=0.8

TRANSP Continues to be a Critical Component for Plasma Physics Research for DIII-D

- Interpretive transport essential for characterizing discharges
 - What are the power/particle/momentum balance fluxes?
 - → Compare to first-principles models (HPC)
 - Are my diagnostics and/or heating sources miscalibrated? W_k≠W_{MHD}, S_n≠S_n^{NUBEAM}?
 → Data consistency for international databases
- Predictive modeling for core transport, equilibrium, MHD instabilities and control solutions
 - Validation studies of reduced models
 - Self-consistent modeling of transport and equilibrium

