
Candidate Frameworks for TRANSP

S. Jardin

 3/23/2015

PPPL

Considerations for developing a (new) Framework?

• Managing complexity: A good framework will
– assist in isolating code components that can be individually maintained by

experts
– allow new and improved physics modules to be seamlessly integrated
– provide user with a transparent and configurable workflow

• Common data structures
– Aids in importing/exporting data with other codes
– Facilitates code benchmarking and validations

• Effective parallelization
– Efficient, load balanced, multiple levels, largely transparent to user

• Can we make use of existing Fusion Code frameworks?
– SWIM/AToM IPS
– ITER IMAS
– OMFIT

SWIM/AToM Integrated Plasma Simulator

Plasma State

Equilibrium and
Profile Advance

Compute RF
propagation

Compute NBI
and -sources

Compute
Distribution
Function

3D MHD

NIMROD

M3D

Linear Stability

PEST-II

Balloon

NOVA-K

AORSA

TORIC

GENRAY

TSC NUBEAM

CQL3D

Driver and Framework

Define and
monitor jobs,
view and
manage data

eqdsk2ps

M3D-C1

replay

trxpl

Exp data
(TRANSP)

ORBIT-RF

Exp data

IPS Components and Framework

• Components
• Physics application code with adapters
• State adapter converts native physics code

data to/from plasma state format
• Component adapter converts between

declared interface and code inputs
• Three interface functions: init(), step(),

finalize()

• Framework
• Lightweight, supports HPC environments
• Allows multiple parallel tasks

(components) to execute concurrently
• Framework services: task manager,

resource manager, data manager,
configuration manager, event service

• Implemented in Python

ITER Integrated Modeling and Analysis Suite (IMAS)

Acronyms and concepts described on following 3 vgs:

IDM - ITER Data Model

IDS - Interface Data Structure

PUAL - Physics User Access Language

IMAS - Integrated Modeling and Analysis Suite

Component Physics code with compliant IO

Kepler - Software tool for connecting components

ITER DATA MODEL (IDM)
• Tree-structure data model that is already being used in the simulation
codes.

• All ITER-specific data that a code (or component) reads or writes
should be compatible with this model.

• For a given component, the actual data read or written by the
component is called the Interface Data Structure (IDS) for that
component. The IDS is a subset of the full ITER Data Model

• For example, in FORTRAN: equilibrium%profiles_1d%phi
• 1D array that contains the toroidal flux at every flux surface

• Several new tokamaks are planning on adopting this:
• JT-60SA, WEST, MAST?

All physics components must be of this form

Physics
Code

Data objects in Data objects out

Interface Data Structure (IDS)

• The Physics User Access Language (PUAL) is a set of Fortran
commands that provide a way to import and export data from
the IDS: put(….), get(…..), etc.

• Once a physics code is IDS-compliant, a utility called a
component generator will turn this code into a component
which Kepler recognizes

Integrated Modeling and Analysis Suite (IMAS)

IMAS is a Kepler based framework for coupling components

Component
 #1

Component
 #2

Component
 #3

Component
 #4

Kepler allows you to graphically configure a workflow once components are
defined and their interface data structure IDS is document and registered.

The ITER Integrated Modeling (IM) activity at ITER will be centered on using
IMAS to develop workflows to do transport modeling, equilibrium and
stability analysis, and other modeling and analysis functions.

Integrated Plasma
Simulator (IPS)

ITER Integrated
Modeling and Analysis

Suite (IMAS)

TRANSP

Workflow
manager

Python-based driver component
controls Configuration, Task, Data ,
Resource, and Event Managers

Kepler graphical interface
workflow engine

Custom UNIX shell scripts to
process input, compile and run
custom executable based on
namelist, and process output

Data Model Plasma State data structure is
encouraged and widely used, but
IPS imposes no particular data
model

ITER Data Model (IDM) uses
tree structure data dictionary

Input Ufiles created from
MDSPlus data. Output
primarily NetCDF. Utilities for
extracting time slice
data.(eqdsk, plasma state,…)

Packaging a
physics code

Python based wrappers that
read/write to plasma state and
prepare and process code output

Physics User Access Language
(PUAL) provides Fortran
commands to import and
export IDM data via Interface
Data Structures (IDSs)

1. Fortran driver to call physics
code as a subroutine with data
passed via core.
2. Systems call to separate
executable. Data via files.

Support for
parallelism

4-levels: within a component,
multiple instances, concurrent
components, parameter studies;
asynchronous tasks and event-
driven work flows

Will have parallel capability,
but not yet demonstrated.

Master-slave. Individual
modules have multi-levels of
parallelism.

Integrated Plasma
Simulator (IPS)

ITER Integrated
Modeling and Analysis

Suite (IMAS)

TRANSP

Output Multiple plasma states, web
portal with graphical output.
Component output files.

Support for storing IDM data,
graphical output

Netcdf…see above

Availability Portable, IPS requires only
Python. Components usually
require Fortran. Maintained
installations at PPPL, ORNL,
NERSC

Now only at ITER IO. Soon to be
installed on member local
clusters

Installed at PPPL, NERSC, JET.
Available via open science grid
to users throughout the world.

Software
Management
tools

SVN based, Issue tracking GIT based, Issue tracking,
automatic building & regression
testing

SVN based, automated issue
tracking (triage), automatic
building and regression testing.

Usage SWIM/AToM IPS users with TSC,
FASTRAN, EPED, TORIC, AORSA,
NUBEAM, GENRAY, CQL3D,
NIMROD, DAKOTA

A few users at ITER IO. Demoed
with CORSICA, DINA. Plans for
usage by members in FY15.

Hundreds of users with
accounts.

OMFIT
• Workflow manager designed to simplify and automate common workflows involving

physics application codes and provide an interface to experimental data.

• Users can supply python modules (or customize existing modules) that execute a given
workflow. All modules use their own data formats (not imposed by OMFIT). Sharing
of modules is encouraged.

• Framework provides high-level functionalities allowing user to execute codes on remote
servers, submit and monitor jobs on HPC batch systems, create custom GUIs, post-
process and visualize data, seamless integration with MDSplus

• Top-level GUI to manage data, run simulations, analyze data

• Emphasis on up-to-date documentation (including YouTube videos), issue tracking

• Common workflows that have been implemented include:
– Kinetic EFIT equilibrium reconstruction including NEO bootstrap current model

– Core and edge stability studies involving CORISCA equilibrium, DCON and GATO stability

– Parametric studies of transport and heating

– RMP induced transport and rotation by coupling M3D-C1 and NTV torque models

– Steady-state transport modeling involving TGYRO, EFIT, NEO, TGLF, ONETWO

• Emphasis has not been on time-dependent modeling
– Plans to couple with the IPS in AToM to execute a ITER transport simulation

– Ability to set up and execute a simulation and access ITM data

TRANSP Data Flow RANK 1,2,…

Rank 0

TRCOM

namelist
state

HEATER
Plasma State

NuBeam

TORIC

PT-SOLVER

TEQ

ISOLVER

MHDEQ
EqBox

Ptransp_TATB
Plasma State

Plasma State

TS1 TS2

TG1 TG2

Ufile Data
trdatbuf

Analysis

TA TB

TA TB

TRANSP Plugin Framework

• TRANSP runs as a serial process

• TRANSP would no longer contain nubeam, toric, teq, …

• Dynamically loadable libraries would be responsible for calculating Fast Ions,

RF heating, equilibriumj, …

• Set in namelist dependency injection

• Can be system or user supplied

• Subset of TRCOM available to libraries

• Implemented with smart pointers

• serializable

TRCOM

Heater

Fast Ion Box
Pointers to

TRCOM

Request()
Initialize()
Step()
Checkstate()
Restart()

Plasma State

Nubeam

TRANSP

NuBeam

Plasma State

MPI_Nubeam
TRCOM

Request()
Initialize()
Step()
Checkstate()
Restart()

socket

Fast Ion Lib

Fast Ion Box

TRANSP

Possible component libraries for FastIonLib

• Directly load in code, nubeam runs serially

• Invoke MPI nubeam through a system call and file communication

• Start a separate MPI nubeam process and communicate with socket

• Implement an IPS interface and invoke nubeam with task manager

• Implement ITER IMAS interfacce as a Kepler component

• Connect to users matlab code

Other libraries

• Data sent to server for exascale analysis

• Control algorithms

• Interacctive control and examination of data

• Data sent to web page or emailed to user for job monitoring

